

HW 5 - SOLUTIONS

Throughout this assignment, A is a ring. If $A \subset B$ is a extension of rings and $x \in B$, then

$$A[x] := \{a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \mid a_i \in A, i = 1, \dots, n\}.$$

$A[x]$ the smallest subring of B containing B and x .

Integral extensions. In the following exercises $A \subset B$ ia an extension of rings. If \mathfrak{a} is an ideal of A , then anelement x of B is said to be *integral over \mathfrak{a}* if there exists a positive integer n and elements $a_i \in \mathfrak{a}$, $i = 1, \dots, n$, such that

$$x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n = 0.$$

1. Show that if $x \in B$ is integral over A , then $A[x]$ is finitely generated as an A -module.

Solution: We know that $x^n + a_1x^{n-1} + \cdots + a_n = 0$ for some $a_1, \dots, a_n \in A$, and some $n \geq 1$. Let M be the A -submodule of $A[x]$ generated by $1, x, \dots, x^{n-1}$. It is clear that $x^{n+k} \in M$ for $k \geq 0$. In greater detail, since $x^n = -(a_1x^{n-1} + \cdots + a_{n-1}x + a_n)$, the statement is true for $k = 0$. For the same reason, $x(x^j) \in M$ for $j = 0, \dots, n-1$, whence $xm \in M$ for every $m \in M$. It follows that $x^d m \in M$ for all $d \geq 0$ and $m \in M$. Taking $m = 1$, we see that $x^k \in M$ for all $k \geq 0$. Thus $A[x] \subset M$. On the other hand, clearly $M \subset A[x]$.

2. Show that if B is finitely generated over A as an A -module, then every element of B is integral over A . [Hint: Use the “determinant trick” introduced when proving Nakayama’s Lemma (see pp. 4–6 of Lecture 5).]

Solution: Suppose b_1, \dots, b_d generate B as an A -module. We have a_{ij} , $1 \leq i, j \leq d$ such that $xb_i = \sum_j a_{ij}b_j$. The determinant trick shows that $\det(x\delta_{ij} - a_{ij}) = 0$. This gives the required integral equation.

3. Let \bar{A} be the subset of B consisting of elements of B integral over A . Show that \bar{A} is a subring of B containing A . (The ring \bar{A} is called the *integral closure of A in B* .)

Solution: It is worth noting that $A \subset \bar{A}$. Let $x, y \in \bar{A}$. Then $A[x]$ is a finitely generated module over A by Problem 1, and since y is integral over $A[x]$ (being integral over A), the same reasoning shows that $A[x, y]$ is a finitely generated $A[x]$ -module. It follows that $A[x, y]$ is a finitely generated A -module. By Problem 2, all elements of $A[x, y]$ are integral over A . In particular, $x \pm y$, and xy lie in \bar{A} . Thus \bar{A} is closed under ring operations, whence it is a subring of B .

4. Let $x \in B$ and let \mathfrak{a} be an ideal of A .
 - Show that if x is integral over \mathfrak{a} , then $x \in \sqrt{\mathfrak{a}B}$,
 - Suppose B is finitely generated over A as an A -module. If $x \in \sqrt{\mathfrak{a}B}$ then show that x is integral over \mathfrak{a} . [Hint: Use the “determinant trick”.]

Solution:

(a) We have $x^n + a_1x^{n-1} + \cdots + a_n = 0$ for some $n \geq 1$ and some $a_i \in \mathfrak{a}$, $i = 1, \dots, n$. Since $x^n = -(a_1x^{n-1} + \cdots + a_{n-1}x + a_n) \in \mathfrak{a}B$, it is clear that $x \in \sqrt{\mathfrak{a}B}$.

(b) Let B be generated as an A -module by b_1, \dots, b_d . Now for some $n \geq 1$, $x^n \in \mathfrak{a}B$, say $x^n = \alpha_s \beta_s$, with $\alpha_s \in \mathfrak{a}$ and $\beta_s \in B$. Writing each of the β_s as linear combinations of the b_i , we see that $x^n = \sum_{i=1}^d y_i b_i$ with $y_i \in \mathfrak{a}$ for $1 \leq i \leq d$. Then $x^n b_i = \sum_{j=1}^d a_{ij} b_j$, for some $a_{ij} \in \mathfrak{a}$, $1 \leq i, j \leq d$. It follows that $\det(x^n \delta_{ij} - a_{ij}) = 0$, which means x is integral over \mathfrak{a} .

Homological Algebra. Let $\mathbf{C}(A)$ denote the category of (cochain) complexes of A -modules. Let C^\bullet and D^\bullet be complexes of A -modules. We write $\text{Hom}_{\mathbf{C}(A)}(C^\bullet, D^\bullet)$, or simply $\text{Hom}(C^\bullet, D^\bullet)$ if the context is clear, for the A -module of cochain maps from C^\bullet to D^\bullet .¹

In addition to $\text{Hom}(C^\bullet, D^\bullet)$ we have another “Hom”—the so called *internal Hom*—between C^\bullet and D^\bullet , namely the complex of A -modules $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ defined as follows: In degree n , $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ is given by

$$\text{Hom}_A^n(C^\bullet, D^\bullet) = \prod_{j \in \mathbf{Z}} \text{Hom}_A(C^j, D^{j+n})$$

and the differential $d^n: \text{Hom}_A^n(C^\bullet, D^\bullet) \rightarrow \text{Hom}_A^{n+1}(C^\bullet, D^\bullet)$ takes $f = (f^j)_{j \in \mathbf{Z}}$ with $f^j \in \text{Hom}_A(C^j, D^{j+n})$ to

$$d^n(f) = (d_{D^\bullet}^{n+j} \circ f^j + (-1)^{n+1} f^{j+1} \circ d_{C^\bullet}^j)_{j \in \mathbf{Z}}.$$

We often write $\text{Hom}^\bullet(C^\bullet, D^\bullet)$ for $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ if no confusion is likely to arise.

A map of complexes $f: C^\bullet \rightarrow D^\bullet$ is said to be *homotopic to zero*, written $f \sim 0$, if there exist A -maps $k^j: C^j \rightarrow D^{j-1}$, one for each $j \in \mathbf{Z}$, such that

$$d_{D^\bullet}^{j-1} \circ k^j + k^{j+1} \circ d_{C^\bullet}^j = f^j.$$

$$\begin{array}{ccccccc} \dots & \longrightarrow & C^{j-1} & \xrightarrow{d_{C^\bullet}^{j-1}} & C^j & \xrightarrow{d_{C^\bullet}^j} & C^{j+1} \longrightarrow \dots \\ & & \downarrow f^{j-1} & \searrow k^j & \downarrow f^j & \searrow k^{j+1} & \downarrow f^{j+1} \\ \dots & \longrightarrow & D^{j-1} & \xrightarrow{d_{D^\bullet}^{j-1}} & D^j & \xrightarrow{d_{D^\bullet}^j} & D^{j+1} \longrightarrow \dots \end{array}$$

If f is homotopic to zero, clearly so is $-f$. Let f, g be two elements of $\text{Hom}(C^\bullet, D^\bullet)$. We say f is *homotopic to g* if $f - g \sim 0$. In this case we write $f \sim g$.

Recall that for $C^\bullet \in \mathbf{C}(A)$, $Z^n(C^\bullet)$ is the A submodule of C^n consisting of n -cocycles, and $B^n(C^\bullet)$, the submodule of n -coboundaries.

Fix $C^\bullet, D^\bullet \in \mathbf{C}(A)$ in what follows. In what follows, keep in mind the difference between $\text{Hom}(C^\bullet, D^\bullet)$ and $\text{Hom}^\bullet(C^\bullet, D^\bullet)$.

5. Show that $\text{Hom}^\bullet(C^\bullet, D^\bullet)$ is a complex.

¹We use the terms “cochain map” and “map of complexes” interchangeably.

Solution: Let $f = (f^j)_{j \in \mathbf{Z}} \in \text{Hom}_A^n(C^\bullet, D^\bullet)$ and $g = d^n f$, and write g^j for the j^{th} component of g , i.e. $g^j: C^j \rightarrow D^{j+n+1}$ and $g = (g^j)_{j \in \mathbf{Z}}$. Then

$$d^{n+1}g = (d_D^{n+1+j}g^j + (-1)^{n+2}g^{j+1}d_C^j)_{j \in \mathbf{Z}}.$$

The computations can be broken up into two parts:

$$\begin{aligned} d_D^{n+1+j}g^j &= d_D^{n+j+1}(d_D^{n+j+1}f^j + (-1)^{n+1}f^{j+1}d_C^j) \\ &= (1)^{n+1}d_D^{n+j+1}f^{j+1}d_C^j \end{aligned}$$

and

$$\begin{aligned} (-1)^{n+2}g^{j+1}d_C^j &= (-1)^{n+2}(d_D^{n+j+1}f^{j+1} + (-1)^{n+1}f^{j+2}d_C^{j+1})d_C^j \\ &= (1)^{n+2}d_D^{n+j+1}f^{j+1}d_C^j \end{aligned}$$

On adding, we see that $d_D^{n+1+j}g^j + (-1)^{n+2}g^{j+1}d_C^j = 0$ for $j \in \mathbf{Z}$, i.e. $d^{n+1}d^n f = 0$ for every $f \in \text{Hom}_A^n(C^\bullet, D^\bullet)$ and every $n \in \mathbf{Z}$. Thus $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ is a complex.

6. Show that $Z^0(\text{Hom}^\bullet(C^\bullet, D^\bullet))$ is the set of cochain maps from C^\bullet to D^\bullet . In other words, show $Z^0(\text{Hom}^\bullet(C^\bullet, D^\bullet)) = \text{Hom}(C^\bullet, D^\bullet)$.

Solution: If $f \in \text{Hom}_A^0(C^\bullet, D^\bullet)$, say $f = (f^j)_{j \in \mathbf{Z}}$, then $d^0 f = (d_D^j f^j - f^{j+1}d_C^j)_{j \in \mathbf{Z}}$. It follows that f is a 0-cocycle in $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ if and only if $d_D^j f^j - f^{j+1}d_C^j = 0$ for all $j \in \mathbf{Z}$, i.e. if and only if f is a cochain map.

7. Show that $B^0(\text{Hom}^\bullet(C^\bullet, D^\bullet))$ is the subset of $\text{Hom}(C^\bullet, D^\bullet)$ consisting of cochain maps which are homotopic to zero.

Solution: An element $f = (f^j)_{j \in \mathbf{Z}} \in \text{Hom}_A^0(C^\bullet, D^\bullet)$ is a 0-coboundary if and only if $f = d^{-1}k$, for some $k \in \text{Hom}_A^{-1}(C^\bullet, D^\bullet)$. Write $k = (k^j)_{j \in \mathbf{Z}}$. The equation $f = d^{-1}k$ translates to $(f^j)_{j \in \mathbf{Z}} = (d_D^{j-1}k^j + k^{j+1}d_C^j)_{j \in \mathbf{Z}}$ which amounts to saying $f \sim 0$.

8. Suppose $f, g \in \text{Hom}(C^\bullet, D^\bullet)$, with $f \sim g$. Show that $\text{H}^n(f) = \text{H}^n(g)$ for all $n \in \mathbf{Z}$.

Solution: There exists $k = (k^j)_{j \in \mathbf{Z}} \in \text{Hom}_A^{-1}(C^\bullet, D^\bullet)$ such that

$$f^n - g^n = d_D^{n-1}k^n + k^{n+1}d_C^n, \quad n \in \mathbf{Z}.$$

Fix $n \in \mathbf{Z}$. Since $d_C^n(\text{Z}^n(C^\bullet)) = 0$ (by definition of $(\text{Z}^n(C^\bullet))$), it follows that $(f^n - g^n)|_{\text{Z}^n(C^\bullet)} = (d_D^{n-1}k^n)|_{\text{Z}^n(C^\bullet)}$. Thus $\text{Im}(f^n - g^n)|_{\text{Z}^n(C^\bullet)} \subset B^n(D^\bullet)$. It is immediate that $\text{H}^n(f - g) = 0$.