

HW 5

Due date: March 21, 2022 (either online or in class)

Throughout this assignment, A is a ring. If $A \subset B$ is a extension of rings and $x \in B$, then

$$A[x] := \{a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n \mid a_i \in A, i = 1, \dots, n\}.$$

$A[x]$ the smallest subring of B containing B and x .

Integral extensions. In the following exercises $A \subset B$ ia an extension of rings. If \mathfrak{a} is an ideal of A , then anelement x of B is said to be *integral over* \mathfrak{a} if there exists a positive integer n and elements $a_i \in \mathfrak{a}$, $i = 1, \dots, n$, such that

$$x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n = 0.$$

1. Show that if $x \in B$ is integral over A , then $A[x]$ is finitely generated as an A -module.
2. Show that if B is finitely generated over A as an A -module, then every element of B is integral over A . [Hint: Use the “determinant trick” introduced when proving Nakayama’s Lemma (see pp. 4–6 of Lecture 5).]
3. Let \bar{A} be the subset of B consisting of elements of B integral over A . Show that \bar{A} is a subring of B containing A . (The ring \bar{A} is called the *integral closure of A in B* .)
4. Let $x \in B$ and let \mathfrak{a} be an ideal of A .
 - (a) Show that if x is integral over \mathfrak{a} , then $x \in \sqrt{\mathfrak{a}B}$,
 - (b) Suppose B is finitely generated over A as an A -module. If $x \in \sqrt{\mathfrak{a}B}$ then show that x is integral over \mathfrak{a} . [Hint: Use the “determinant trick”.]

Homological Algebra. Let $\mathbf{C}(A)$ denote the category of (cochain) complexes of A -modules. Let C^\bullet and D^\bullet be complexes of A -modules. We write $\text{Hom}_{\mathbf{C}(A)}(C^\bullet, D^\bullet)$, or simply $\text{Hom}(C^\bullet, D^\bullet)$ if the context is clear, for the A -module of cochain maps from C^\bullet to D^\bullet .¹

In addition to $\text{Hom}(C^\bullet, D^\bullet)$ we have another “Hom”–the so called *internal Hom*–between C^\bullet and D^\bullet , namely the complex of A -modules $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ defined as follows: In degree n , $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ is given by

$$\text{Hom}_A^n(C^\bullet, D^\bullet) = \prod_{j \in \mathbf{Z}} \text{Hom}_A(C^j, D^{j+n})$$

and the differential $d^n: \text{Hom}_A^n(C^\bullet, D^\bullet) \rightarrow \text{Hom}_A^{n+1}(C^\bullet, D^\bullet)$ takes $f = (f^j)_{j \in \mathbf{Z}}$ with $f^j \in \text{Hom}_A(C^j, D^{j+n})$ to

$$d^n(f) = (d_{D^\bullet}^{n+j} \circ f^j + (-1)^{n+1} f^{j+1} \circ d_{C^\bullet}^j)_{j \in \mathbf{Z}}.$$

¹We use the terms “cochain map” and “map of complexes” interchangeably.

We often write $\text{Hom}^\bullet(C^\bullet, D^\bullet)$ for $\text{Hom}_A^\bullet(C^\bullet, D^\bullet)$ if no confusion is likely to arise.

A map of complexes $f: C^\bullet \rightarrow D^\bullet$ is said to be *homotopic to zero*, written $f \sim 0$, if there exist A -maps $k^j: C^j \rightarrow D^{j-1}$, one for each $j \in \mathbf{Z}$, such that

$$d_{D^\bullet}^{j-1} \circ k^j + k^{j+1} \circ d_{C^\bullet}^j = f^j.$$

$$\begin{array}{ccccccc} \dots & \longrightarrow & C^{j-1} & \xrightarrow{d_{C^\bullet}^{j-1}} & C^j & \xrightarrow{d_{C^\bullet}^j} & C^{j+1} \longrightarrow \dots \\ & & f^{j-1} \downarrow & \swarrow k^j & \downarrow f^j & \swarrow k^{j+1} & \downarrow f^{j+1} \\ \dots & \longrightarrow & D^{j-1} & \xrightarrow{d_{D^\bullet}^{j-1}} & D^j & \xrightarrow{d_{D^\bullet}^j} & D^{j+1} \longrightarrow \dots \end{array}$$

If f is homotopic to zero, clearly so is $-f$. Let f, g be two elements of $\text{Hom}(C^\bullet, D^\bullet)$. We say f is *homotopic to* g if $f - g \sim 0$. In this case we write $f \sim g$.

Recall that for $C^\bullet \in \mathbf{C}(A)$, $Z^n(C^\bullet)$ is the A submodule of C^n consisting of n -cocycles, and $B^n(C^\bullet)$, the submodule of n -coboundaries.

Fix $C^\bullet, D^\bullet \in \mathbf{C}(A)$ in what follows. In what follows, keep in mind the difference between $\text{Hom}(C^\bullet, D^\bullet)$ and $\text{Hom}^\bullet(C^\bullet, D^\bullet)$.

5. Show that $\text{Hom}^\bullet(C^\bullet, D^\bullet)$ is a complex.
6. Show that $Z^0(\text{Hom}^\bullet(C^\bullet, D^\bullet))$ is the set of cochain maps from C^\bullet to D^\bullet . In other words, show $Z^0(\text{Hom}^\bullet(C^\bullet, D^\bullet)) = \text{Hom}(C^\bullet, D^\bullet)$.
7. Show that $B^0(\text{Hom}^\bullet(C^\bullet, D^\bullet))$ is the subset of $\text{Hom}(C^\bullet, D^\bullet)$ consisting of cochain maps which are homotopic to zero.
8. Suppose $f, g \in \text{Hom}(C^\bullet, D^\bullet)$, with $f \sim g$. Show that $H^n(f) = H^n(g)$ for all $n \in \mathbf{Z}$.