
HW 4 - SOLUTIONS

Throughout this assignment, A is a ring, and M an A-module. As always, a
proper submodule of M is a submodule which is not equal to M .

Annihilators and the support of a module. The annihilator ann(m) of an
element m ∈ M is the set of elements a ∈ A such that am = 0. It is clear that
ann(m) is an ideal of A. If we wish to specify the ring in which the annihilator is
computed (M could be regarded as a module over any ring which maps to A), then
we write annA(M) for ann(M). The annhilator of M in A is the ideal ann(M), or
more accurately, annA(M), defined by the formula

ann(M) = annA(M) :=
⋂
m∈M

ann(m).

If {mλ | λ ∈ Λ} is a set of generators ofM , it is clear that ann(M) =
⋂
λ∈Λ ann(mλ).

The support of M over A, or simply the support of M if the context is clear,
denoted Supp(M), is:

Supp(M) := {p ∈ SpecA |Mp 6= 0}.
Once again, if we wish to specify the ring A, we write SuppA(M) for the support
of M over A.

1. If Supp(M) = ∅ then show that M = 0. [Hint: Reduce to the case where M is
finitely generated. Next show that there exist fλ ∈ A, λ varying in some index
set Λ, such that {D(fλ) | λ ∈ Λ} is an open cover of X = SpecA, and Mfλ = 0
for every λ. Use the quasi-compactness of X to find elements g1, . . . , gd ∈ A,
such that gi ∈ Ann(M) and ∪iD(gi) = X.]

Solution: The hint was unnecessary as I now realise. For p ∈ Spec(A), let 1p be
the multiplicative identity in Ap. Let m ∈ M . Then m/1p = 0 ∈ Ap for every
p ∈ Spec(A). For each prime ideal p there then exists an elements sp ∈ A r p
such that spm = 0. Since p ∈ Asp , it is clear that {D(sp) | p ∈ Spec(A)} is
an open cover of Spec(A). We can find a finite subcover of this. This means
we can find f1, . . . , fd ∈ A such that fim = 0 and ∪di=1D(fi) = Spec(A). Since

〈f1, . . . , fd〉 = A we have a1, . . . , ad ∈ A such that
∑d
i=1 aifi = 1. It follows that

m = 1 ·m =
∑d
i=1 aifim = 0. �

2. Suppose M is finitely generated.
(a) Show that V (ann(M)) = Supp(M).
(b) Show that √

ann(M) =
⋂

p∈Supp(M)

p.

Solution: Let M = 〈m1, . . . ,md〉. Let p ∈ Spec(A). Let S = Ar p. It is evident
that Mp = 0 if and only if mi/1 = 0 in Ap. This happens if and only of there exist
si ∈ S such that simi = 0 for i = 1, . . . , d. The last condition is equivalent to the
condition that there exists s ∈ S such that smi = 0. Indeed, if such an s ∈ S exists,
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then we can choose si to equal s for all i = 1, . . . , d, and conversely, if there exist
si ∈ S such that simi = 0, i = 1, . . . , d, then we can set s = s1 . . . sd. Now smi = 0
for all i if and only if s ∈ ann(M). Thus the condition Mp = 0 is equivalent to
saying there exists s ∈ S ∩ ann(M), i.e. ann(M) * p. It follows that Mp 6= 0 if
and only if ann(M) ⊂ p. This proves (a). Part (b) is a direct consequence, since√

ann(M) =
⋂

p∈V (ann(M)) p.

There is a second approach which is more transparent. Suppose Mp 6= 0. Then
there is some m ∈ M r {0} such that m/1 6= 0. Clearly sm 6= 0 for any s ∈ S.
Thus S ∩ ann(m) = ∅, i.e. ann(m) ⊂ p, which means ann(M) ⊂ p. This inclusion
does not require finite generation of M . However, to show that if p ⊃ ann(M),
then Mp 6= 0, we do require finite generation. Clearly ann(M) = ∩d1=1ann(mi). By
the very first proposition of Lecture 8 we have ann(mi) ⊂ p for some i ∈ {1, . . . , d}.
Thus if s ∈ S, then s /∈ ann(mi), whence mi/1 6= 0. �

Irreducible submodules. A submodule N of M is called irreducible in M (or
simply irreducible if the context is clear) if is satisfies the following condition: If
there exist two submodules N1 and N2 of M such that N = N1 ∩N2, then N = N1

or N = N2.

3. Let A be Noetherian and M finitely generated. Show that every proper submod-
ule of M can be written as a finite intersection of irreducible modules. [Hint:
The proof of Proposition 2.1.3 of Lecture 12 may help.]

Solution: Let Σ be the collection of proper submodules of M which cannot be
written as a finite intersection of irreducible modules. Suppose Σ is nonempty.
Then there exists a maximal element N of Σ. N cannot be irreducible, and so
N = N1∩N2, where neither N1 nor N2 is N . This means Ni are proper submodules
of M , and by maximality of N , each of them is a finite intersection of irreducible
submodules, whence N is a finite intersection of irreducible submodules. This
contradicts the fact that N is a member of Σ. Thus Σ is empty. �

Associated primes. A prime ideal p of A is said to be associated to M if there
exists m ∈ M such that p = ann(m). We denote by AssA(M) the collection of
primes associated to M .1 If the context is clear, we write Ass(M) for AssA(M).

4. (a) Let M = A/p, where p is a prime ideal of A. Show that for every element
m ∈M r {0}, ann(m) = p. Conclude that AssA(A/p) = {p}.

(b) Calculate AssA/p(A/p).
(c) Prove that p ∈ Ass(M) if and only if there is an injective A-module map

from A/p into M .

Solution:

(a) Suppose m is non-zero in M . Then m = a + p, with a /∈ p. It is clear that
xm = 0 for x ∈ A if and only if xa ∈ p, and since a /∈ p, the last condition
is equivalent to saying x ∈ p. Thus ann(m) = p. From this it is clear that
Ass(M) = {p}. �

(b) Since A/p is an integral domain, annA/p(m) = 0 for any non-zero element of
A/p. Since 0 is a prime ideal of A/p, it follows that AssA/p(A/p) = {〈0〉}. �

1Instead of “p is a prime associated to M” we often say “p is an associated prime of M”.
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(c) Suppose we have an injective map A/p ↪→M . Then for any nonzero element
m in the image of A/p, we have ann(m) = p by part (a). Thus p ∈ Ass(M).
Conversely, if p ∈ Ass(M), there exists a nonzero m ∈ M such that p =
ann(m). Let f : A → M be the A-map given by f(a) = am. Then ker (f) =
ann(m) = p, and hence we have an injective map A/p ↪→M . �

5. Let

0 −→ N −→M −→ T −→ 0

be an exact sequence of A-modules.
(a) Show that Ass(N) ⊂ Ass(M).
(b) Show that Ass(M) ⊂ Ass(N) ∪ Ass(T ). [Hint: If p ∈ Ass(M) r Ass(N),

then show that p ∈ Ass(T ).]

Solution:

(a) Since N → M is injective, we may regard N as a submodule of M . The
annihilator of any element of N is the same as the annihilator of its image in
M , and hence Ass(N) ⊂ Ass(M). �

(b) Suppose p ∈ Ass(M) r Ass(N). Let m ∈ M be such that p = ann(m).
Since p /∈ Ass(N), m does not lie in N , and so the image t of m in T is
non-zero. Moreover p = ann(m) ⊂ ann(t). Let x ∈ ann(t). Then xm ∈ N
and ann(xm) ⊃ ann(m) = p. This is a strict inclusion since p is not an
associated prime of N . Therefore there exists an element s ∈ ann(xm) r p.
Since sx ∈ ann(m) = p and s /∈ p, it follows that x ∈ p. Thus p = ann(t). �

6. Prove that if A is Noetherian and M 6= 0 then Ass(M) 6= ∅. [Hint: Apply
the maximality condition to the set of ideals which are annihilators of non-zero
elements.]

Solution: Following the hint, suppose a is a maximal member of the set if anni-
hilators of non-zero elements of M . Say a = ann(m). If a /∈ a then ann(am) = a,
since ann(am) ⊃ ann(m) = a, and a is maximal amongst annihilators of nonzero
elements of M . Accordingly, if ab ∈ a and a /∈ a, then b ∈ ann(am) = a. Thus a is
prime, and so a ∈ Ass(M).

7. A zero divisor of M is an element a ∈ A such that am = 0 for some non-zero
element m of M . Let ZD(M) denote the set of zero divisors of M . If A is
Noetherian, show that

ZD(M) =
⋃

p∈Ass(M)

p.

Solution: It is clear that ZD(M) =
⋃
m6=0 ann(m). In particular we have the

inclusion
⋃

p∈Ass(M) p ⊂ ZD(M). (For this inclusion, the Noetherian-ness of A

plays no role.)
Since A is Noetherian, if Σ = {ann(m) | m 6= 0}, and Σmax is the subset of

Σ consisting of maximal elements of Σ, then every member of Σ is contained in a
member of Σmax. Thus ZD(M) =

⋃
p∈Σmax

p. From the solution to the previous

problem we see that Σmax ⊂ Ass(M), whence ZD(M) ⊂
⋃

p∈Ass(M) p. �

8. Let A be Noetherian and M finitely generated.
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(a) Show that we have a descending chain of submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0

such that Mi/Mi+1
∼= A/pi for some pi ∈ SpecA, i = 0, . . . , n− 1.

(b) Show that Ass(M) is a finite set. [Hint: Use part (b) of Problem 5.]

Solution: We avoid annoying trivialities like M being zero. Note that if M is non
zero, so is A.

(a) Equivalently, it is enough to show that there is an increasing sequence of A-
modules 0 = N0 ⊂ N1 ⊂ . . . Nd = M such that N/Ni−1

∼= A/qi for some
qi ∈ Spec(A), i = 1, . . . , d. Pick q1 in the nonempty set Ass(M). By part
(c) of Problem 4, we have an injective map A/q1 ↪→ M . Let N1 be the
image of A/q1 in M . Suppose we have Nj , 1 ≤ j ≤ i such that N0 = 0,
Nj−1 ⊂ Nj and Nj/Nj−1A/qj for j = 1, . . . , i. If Ni = M we are done. If
not, pick qi+1 ∈ Ass(M/Ni). We have a copy of A/qi+1 in M/Ni, and this
copy must be of the form Ni+1/Ni for a submodule Ni+1 of M containing
Ni. Since A is Noetherian and M is finitely generated, the ascending chain
N0 ⊂ N1 ⊂ . . . Ni ⊂ . . . must become stationary, and we are done. �

(b) Let M0, . . . ,Mn and p1, . . . , pn be as in the statement of part (a). Applying
part (b) of Problem 5 successively to the exact sequences 0→Mi+1 →Mi →
Mi/Mi+1 → 0 we see that Ass(M) ⊂ {p1, . . . , pn}. �
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