

HW 4 - SOLUTIONS

Throughout this assignment, A is a ring, and M an A -module. As always, a *proper* submodule of M is a submodule which is not equal to M .

Annihilators and the support of a module. The *annihilator* $\text{ann}(m)$ of an element $m \in M$ is the set of elements $a \in A$ such that $am = 0$. It is clear that $\text{ann}(m)$ is an ideal of A . If we wish to specify the ring in which the annihilator is computed (M could be regarded as a module over any ring which maps to A), then we write $\text{ann}_A(M)$ for $\text{ann}(M)$. The *annihilator of M in A* is the ideal $\text{ann}(M)$, or more accurately, $\text{ann}_A(M)$, defined by the formula

$$\text{ann}(M) = \text{ann}_A(M) := \bigcap_{m \in M} \text{ann}(m).$$

If $\{m_\lambda \mid \lambda \in \Lambda\}$ is a set of generators of M , it is clear that $\text{ann}(M) = \bigcap_{\lambda \in \Lambda} \text{ann}(m_\lambda)$.

The *support of M over A* , or simply the *support of M* if the context is clear, denoted $\text{Supp}(M)$, is:

$$\text{Supp}(M) := \{\mathfrak{p} \in \text{Spec } A \mid M_{\mathfrak{p}} \neq 0\}.$$

Once again, if we wish to specify the ring A , we write $\text{Supp}_A(M)$ for the support of M over A .

1. If $\text{Supp}(M) = \emptyset$ then show that $M = 0$. [Hint: Reduce to the case where M is finitely generated. Next show that there exist $f_\lambda \in A$, λ varying in some index set Λ , such that $\{D(f_\lambda) \mid \lambda \in \Lambda\}$ is an open cover of $X = \text{Spec } A$, and $M_{f_\lambda} = 0$ for every λ . Use the quasi-compactness of X to find elements $g_1, \dots, g_d \in A$, such that $g_i \in \text{Ann}(M)$ and $\bigcup_i D(g_i) = X$.]

Solution: The hint was unnecessary as I now realise. For $\mathfrak{p} \in \text{Spec}(A)$, let $1_{\mathfrak{p}}$ be the multiplicative identity in $A_{\mathfrak{p}}$. Let $m \in M$. Then $m/1_{\mathfrak{p}} = 0 \in A_{\mathfrak{p}}$ for every $\mathfrak{p} \in \text{Spec}(A)$. For each prime ideal \mathfrak{p} there then exists an elements $s_{\mathfrak{p}} \in A \setminus \mathfrak{p}$ such that $s_{\mathfrak{p}}m = 0$. Since $\mathfrak{p} \in A_{s_{\mathfrak{p}}}$, it is clear that $\{D(s_{\mathfrak{p}}) \mid \mathfrak{p} \in \text{Spec}(A)\}$ is an open cover of $\text{Spec}(A)$. We can find a finite subcover of this. This means we can find $f_1, \dots, f_d \in A$ such that $f_i m = 0$ and $\bigcup_{i=1}^d D(f_i) = \text{Spec}(A)$. Since $\langle f_1, \dots, f_d \rangle = A$ we have $a_1, \dots, a_d \in A$ such that $\sum_{i=1}^d a_i f_i = 1$. It follows that $m = 1 \cdot m = \sum_{i=1}^d a_i f_i m = 0$. \square

2. Suppose M is finitely generated.

- (a) Show that $V(\text{ann}(M)) = \text{Supp}(M)$.
- (b) Show that

$$\sqrt{\text{ann}(M)} = \bigcap_{\mathfrak{p} \in \text{Supp}(M)} \mathfrak{p}.$$

Solution: Let $M = \langle m_1, \dots, m_d \rangle$. Let $\mathfrak{p} \in \text{Spec}(A)$. Let $S = A \setminus \mathfrak{p}$. It is evident that $M_{\mathfrak{p}} = 0$ if and only if $m_i/1 = 0$ in $A_{\mathfrak{p}}$. This happens if and only if there exist $s_i \in S$ such that $s_i m_i = 0$ for $i = 1, \dots, d$. The last condition is equivalent to the condition that there exists $s \in S$ such that $s m_i = 0$. Indeed, if such an $s \in S$ exists,

then we can choose s_i to equal s for all $i = 1, \dots, d$, and conversely, if there exist $s_i \in S$ such that $s_i m_i = 0$, $i = 1, \dots, d$, then we can set $s = s_1 \dots s_d$. Now $s m_i = 0$ for all i if and only if $s \in \text{ann}(M)$. Thus the condition $M_{\mathfrak{p}} = 0$ is equivalent to saying there exists $s \in S \cap \text{ann}(M)$, i.e. $\text{ann}(M) \not\subseteq \mathfrak{p}$. It follows that $M_{\mathfrak{p}} \neq 0$ if and only if $\text{ann}(M) \subset \mathfrak{p}$. This proves (a). Part (b) is a direct consequence, since $\sqrt{\text{ann}(M)} = \bigcap_{\mathfrak{p} \in V(\text{ann}(M))} \mathfrak{p}$.

There is a second approach which is more transparent. Suppose $M_{\mathfrak{p}} \neq 0$. Then there is some $m \in M \setminus \{0\}$ such that $m/1 \neq 0$. Clearly $s m \neq 0$ for any $s \in S$. Thus $S \cap \text{ann}(m) = \emptyset$, i.e. $\text{ann}(m) \subset \mathfrak{p}$, which means $\text{ann}(M) \subset \mathfrak{p}$. This inclusion does not require finite generation of M . However, to show that if $\mathfrak{p} \supset \text{ann}(M)$, then $M_{\mathfrak{p}} \neq 0$, we do require finite generation. Clearly $\text{ann}(M) = \cap_{i=1}^d \text{ann}(m_i)$. By the very first proposition of [Lecture 8](#) we have $\text{ann}(m_i) \subset \mathfrak{p}$ for some $i \in \{1, \dots, d\}$. Thus if $s \in S$, then $s \notin \text{ann}(m_i)$, whence $m_i/1 \neq 0$. \square

Irreducible submodules. A submodule N of M is called *irreducible in M* (or simply *irreducible* if the context is clear) if it satisfies the following condition: If there exist two submodules N_1 and N_2 of M such that $N = N_1 \cap N_2$, then $N = N_1$ or $N = N_2$.

3. Let A be Noetherian and M finitely generated. Show that every proper submodule of M can be written as a finite intersection of irreducible modules. [Hint: The proof of Proposition 2.1.3 of [Lecture 12](#) may help.]

Solution: Let Σ be the collection of proper submodules of M which cannot be written as a finite intersection of irreducible modules. Suppose Σ is nonempty. Then there exists a maximal element N of Σ . N cannot be irreducible, and so $N = N_1 \cap N_2$, where neither N_1 nor N_2 is N . This means N_i are proper submodules of M , and by maximality of N , each of them is a finite intersection of irreducible submodules, whence N is a finite intersection of irreducible submodules. This contradicts the fact that N is a member of Σ . Thus Σ is empty. \square

Associated primes. A prime ideal \mathfrak{p} of A is said to be *associated to M* if there exists $m \in M$ such that $\mathfrak{p} = \text{ann}(m)$. We denote by $\text{Ass}_A(M)$ the collection of primes associated to M .¹ If the context is clear, we write $\text{Ass}(M)$ for $\text{Ass}_A(M)$.

4. (a) Let $M = A/\mathfrak{p}$, where \mathfrak{p} is a prime ideal of A . Show that for every element $m \in M \setminus \{0\}$, $\text{ann}(m) = \mathfrak{p}$. Conclude that $\text{Ass}_A(A/\mathfrak{p}) = \{\mathfrak{p}\}$.
 (b) Calculate $\text{Ass}_{A/\mathfrak{p}}(A/\mathfrak{p})$.
 (c) Prove that $\mathfrak{p} \in \text{Ass}(M)$ if and only if there is an injective A -module map from A/\mathfrak{p} into M .

Solution:

(a) Suppose m is non-zero in M . Then $m = a + \mathfrak{p}$, with $a \notin \mathfrak{p}$. It is clear that $xm = 0$ for $x \in A$ if and only if $xa \in \mathfrak{p}$, and since $a \notin \mathfrak{p}$, the last condition is equivalent to saying $x \in \mathfrak{p}$. Thus $\text{ann}(m) = \mathfrak{p}$. From this it is clear that $\text{Ass}(M) = \{\mathfrak{p}\}$. \square
 (b) Since A/\mathfrak{p} is an integral domain, $\text{ann}_{A/\mathfrak{p}}(m) = 0$ for any non-zero element of A/\mathfrak{p} . Since 0 is a prime ideal of A/\mathfrak{p} , it follows that $\text{Ass}_{A/\mathfrak{p}}(A/\mathfrak{p}) = \{\langle 0 \rangle\}$. \square

¹Instead of “ \mathfrak{p} is a prime associated to M ” we often say “ \mathfrak{p} is an associated prime of M ”.

(c) Suppose we have an injective map $A/\mathfrak{p} \hookrightarrow M$. Then for any nonzero element m in the image of A/\mathfrak{p} , we have $\text{ann}(m) = \mathfrak{p}$ by part (a). Thus $\mathfrak{p} \in \text{Ass}(M)$. Conversely, if $\mathfrak{p} \in \text{Ass}(M)$, there exists a nonzero $m \in M$ such that $\mathfrak{p} = \text{ann}(m)$. Let $f: A \rightarrow M$ be the A -map given by $f(a) = am$. Then $\ker(f) = \text{ann}(m) = \mathfrak{p}$, and hence we have an injective map $A/\mathfrak{p} \hookrightarrow M$. \square

5. Let

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

be an exact sequence of A -modules.

(a) Show that $\text{Ass}(N) \subset \text{Ass}(M)$.
 (b) Show that $\text{Ass}(M) \subset \text{Ass}(N) \cup \text{Ass}(T)$. [Hint: If $\mathfrak{p} \in \text{Ass}(M) \setminus \text{Ass}(N)$, then show that $\mathfrak{p} \in \text{Ass}(T)$.]

Solution:

(a) Since $N \rightarrow M$ is injective, we may regard N as a submodule of M . The annihilator of any element of N is the same as the annihilator of its image in M , and hence $\text{Ass}(N) \subset \text{Ass}(M)$. \square
 (b) Suppose $\mathfrak{p} \in \text{Ass}(M) \setminus \text{Ass}(N)$. Let $m \in M$ be such that $\mathfrak{p} = \text{ann}(m)$. Since $\mathfrak{p} \notin \text{Ass}(N)$, m does not lie in N , and so the image t of m in T is non-zero. Moreover $\mathfrak{p} = \text{ann}(m) \subset \text{ann}(t)$. Let $x \in \text{ann}(t)$. Then $xm \in N$ and $\text{ann}(xm) \supset \text{ann}(m) = \mathfrak{p}$. This is a strict inclusion since \mathfrak{p} is not an associated prime of N . Therefore there exists an element $s \in \text{ann}(xm) \setminus \mathfrak{p}$. Since $sx \in \text{ann}(m) = \mathfrak{p}$ and $s \notin \mathfrak{p}$, it follows that $x \in \mathfrak{p}$. Thus $\mathfrak{p} = \text{ann}(t)$. \square

6. Prove that if A is Noetherian and $M \neq 0$ then $\text{Ass}(M) \neq \emptyset$. [Hint: Apply the maximality condition to the set of ideals which are annihilators of non-zero elements.]

Solution: Following the hint, suppose \mathfrak{a} is a maximal member of the set of annihilators of non-zero elements of M . Say $\mathfrak{a} = \text{ann}(m)$. If $a \notin \mathfrak{a}$ then $\text{ann}(am) = \mathfrak{a}$, since $\text{ann}(am) \supset \text{ann}(m) = \mathfrak{a}$, and \mathfrak{a} is maximal amongst annihilators of nonzero elements of M . Accordingly, if $ab \in \mathfrak{a}$ and $a \notin \mathfrak{a}$, then $b \in \text{ann}(am) = \mathfrak{a}$. Thus \mathfrak{a} is prime, and so $\mathfrak{a} \in \text{Ass}(M)$.

7. A *zero divisor* of M is an element $a \in A$ such that $am = 0$ for some non-zero element m of M . Let $\text{ZD}(M)$ denote the set of zero divisors of M . If A is Noetherian, show that

$$\text{ZD}(M) = \bigcup_{\mathfrak{p} \in \text{Ass}(M)} \mathfrak{p}.$$

Solution: It is clear that $\text{ZD}(M) = \bigcup_{m \neq 0} \text{ann}(m)$. In particular we have the inclusion $\bigcup_{\mathfrak{p} \in \text{Ass}(M)} \mathfrak{p} \subset \text{ZD}(M)$. (For this inclusion, the Noetherian-ness of A plays no role.)

Since A is Noetherian, if $\Sigma = \{\text{ann}(m) \mid m \neq 0\}$, and Σ_{\max} is the subset of Σ consisting of maximal elements of Σ , then every member of Σ is contained in a member of Σ_{\max} . Thus $\text{ZD}(M) = \bigcup_{\mathfrak{p} \in \Sigma_{\max}} \mathfrak{p}$. From the solution to the previous problem we see that $\Sigma_{\max} \subset \text{Ass}(M)$, whence $\text{ZD}(M) \subset \bigcup_{\mathfrak{p} \in \text{Ass}(M)} \mathfrak{p}$. \square

8. Let A be Noetherian and M finitely generated.

(a) Show that we have a descending chain of submodules

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = 0$$

such that $M_i/M_{i+1} \cong A/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \text{Spec } A$, $i = 0, \dots, n-1$.

(b) Show that $\text{Ass}(M)$ is a finite set. [Hint: Use part (b) of Problem 5.]

Solution: We avoid annoying trivialities like M being zero. Note that if M is non zero, so is A .

(a) Equivalently, it is enough to show that there is an increasing sequence of A -modules $0 = N_0 \subset N_1 \subset \dots \subset N_d = M$ such that $N_i/N_{i-1} \cong A/\mathfrak{q}_i$ for some $\mathfrak{q}_i \in \text{Spec}(A)$, $i = 1, \dots, d$. Pick \mathfrak{q}_1 in the nonempty set $\text{Ass}(M)$. By part (c) of Problem 4, we have an injective map $A/\mathfrak{q}_1 \hookrightarrow M$. Let N_1 be the image of A/\mathfrak{q}_1 in M . Suppose we have N_j , $1 \leq j \leq i$ such that $N_0 = 0$, $N_{j-1} \subset N_j$ and $N_j/N_{j-1} \cong A/\mathfrak{q}_j$ for $j = 1, \dots, i$. If $N_i = M$ we are done. If not, pick $\mathfrak{q}_{i+1} \in \text{Ass}(M/N_i)$. We have a copy of A/\mathfrak{q}_{i+1} in M/N_i , and this copy must be of the form N_{i+1}/N_i for a submodule N_{i+1} of M containing N_i . Since A is Noetherian and M is finitely generated, the ascending chain $N_0 \subset N_1 \subset \dots \subset N_i \subset \dots$ must become stationary, and we are done. \square

(b) Let M_0, \dots, M_n and $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be as in the statement of part (a). Applying part (b) of Problem 5 successively to the exact sequences $0 \rightarrow M_{i+1} \rightarrow M_i \rightarrow M_i/M_{i+1} \rightarrow 0$ we see that $\text{Ass}(M) \subset \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. \square