HW 4 - SOLUTIONS

Throughout this assignment, A is a ring, and M an A-module. As always, a
proper submodule of M is a submodule which is not equal to M.

Annihilators and the support of a module. The annihilator ann(m) of an
element m € M is the set of elements a € A such that am = 0. It is clear that
ann(m) is an ideal of A. If we wish to specify the ring in which the annihilator is
computed (M could be regarded as a module over any ring which maps to A), then
we write ann 4 (M) for ann(M). The annhilator of M in A is the ideal ann(M), or
more accurately, ann 4 (M), defined by the formula

ann(M) = anny (M) := ﬂ ann(m).
meM
If {mx | A € A} is aset of generators of M, it is clear that ann(M) = [, ., ann(my).

The support of M over A, or simply the support of M if the context is clear,
denoted Supp(M), is:

Supp(M):= {p € Spec A | M, # 0}.

Once again, if we wish to specify the ring A, we write Supp 4 (M) for the support
of M over A.

1. If Supp(M) = 0 then show that M = 0. [Hint: Reduce to the case where M is
finitely generated. Next show that there exist f) € A, A varying in some index
set A, such that {D(f)) | A € A} is an open cover of X = Spec 4, and My, =0
for every A. Use the quasi-compactness of X to find elements ¢1,...,g94 € A,
such that g; € Ann(M) and U;D(g;) = X ]

Solution: The hint was unnecessary as I now realise. For p € Spec(A4), let 1, be
the multiplicative identity in A,. Let m € M. Then m/1, = 0 € A, for every
p € Spec(A). For each prime ideal p there then exists an elements s, € A\ p
such that sym = 0. Since p € A,,, it is clear that {D(s,) | p € Spec(A)} is
an open cover of Spec(A). We can find a finite subcover of this. This means
we can find fi,..., fs € A such that fim = 0 and UL, D(f;) = Spec(4). Since
(f1,---, fa) = A we have ay,...,aq € A such that Zj’:] a; fi = 1. Tt follows that
m=1-m= Zle a; fim=0. O

2. Suppose M is finitely generated.
(a) Show that V(ann(M)) = Supp(M).

(b) Show that
vann(M) = ﬂ p.

pESupp(M)

Solution: Let M = (my,...,mg). Let p € Spec(A). Let S = A~ p. It is evident

that M, = 0 if and only if m;/1 = 0 in A,. This happens if and only of there exist

s; € S such that s;m; = 0 for i = 1,...,d. The last condition is equivalent to the

condition that there exists s € S such that sm; = 0. Indeed, if such an s € S exists,
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then we can choose s; to equal s for all ¢ = 1,...,d, and conversely, if there exist
s; € S such that s;m; =0,7=1,...,d, then we can set s = s1...54. Now sm; =0
for all ¢ if and only if s € ann(M). Thus the condition M, = 0 is equivalent to
saying there exists s € S Nann(M), i.e. ann(M) ¢ p. It follows that M, # 0 if
and only if ann(M) C p. This proves (a). Part (b) is a direct consequence, since
V ann(Af) = mpe\/(ann(M)) p.

There is a second approach which is more transparent. Suppose M, # 0. Then
there is some m € M ~ {0} such that m/1 # 0. Clearly sm # 0 for any s € S.
Thus S Nann(m) = (), i.e. ann(m) C p, which means ann(M) C p. This inclusion
does not require finite generation of M. However, to show that if p D ann(M),
then M, # 0, we do require finite generation. Clearly ann(M) = N¢_ ann(m;). By
the very first proposition of Lecture 8 we have ann(m;) C p for some i € {1,...,d}.
Thus if s € S, then s ¢ ann(m;), whence m;/1 # 0. O

Irreducible submodules. A submodule N of M is called irreducible in M (or

simply irreducible if the context is clear) if is satisfies the following condition: If

there exist two submodules Ny and Ny of M such that N = Ny N Ny, then N = Ny

or N =Ns.

3. Let A be Noetherian and M finitely generated. Show that every proper submod-
ule of M can be written as a finite intersection of irreducible modules. [Hint:
The proof of Proposition 2.1.3 of Lecture 12 may help.]

Solution: Let X be the collection of proper submodules of M which cannot be
written as a finite intersection of irreducible modules. Suppose ¥ is nonempty.
Then there exists a maximal element N of . NN cannot be irreducible, and so
N = N1N Ny, where neither Ny nor Ny is N. This means N; are proper submodules
of M, and by maximality of IV, each of them is a finite intersection of irreducible
submodules, whence N is a finite intersection of irreducible submodules. This
contradicts the fact that N is a member of X. Thus X is empty. O

Associated primes. A prime ideal p of A is said to be associated to M if there
exists m € M such that p = ann(m). We denote by Asss(M) the collection of
primes associated to M.! If the context is clear, we write Ass(M) for Ass4(M).

4. (a) Let M = A/p, where p is a prime ideal of A. Show that for every element
m € M N\ {0}, ann(m) = p. Conclude that Asss(A/p) = {p}.
(b) Calculate Ass/,(A/p).
(c) Prove that p € Ass(M) if and only if there is an injective A-module map
from A/p into M.

Solution:

(a) Suppose m is non-zero in M. Then m = a + p, with a ¢ p. It is clear that
am = 0 for x € A if and only if xza € p, and since a ¢ p, the last condition
is equivalent to saying x € p. Thus ann(m) = p. From this it is clear that
Ass(M) = {p}. O

(b) Since A/p is an integral domain, ann 4/, (m) = 0 for any non-zero element of

A/p. Since 0 is a prime ideal of A/p, it follows that Ass,/,(A/p) = {(0)}. O

Unstead of “p is a prime associated to M” we often say “p is an associated prime of M”.
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(c) Suppose we have an injective map A/p < M. Then for any nonzero element
m in the image of A/p, we have ann(m) = p by part (a). Thus p € Ass(M).
Conversely, if p € Ass(M), there exists a nonzero m € M such that p =
ann(m). Let f: A — M be the A-map given by f(a) = am. Then ker (f) =
ann(m) = p, and hence we have an injective map A/p < M. d

5. Let
0O—N-—>M—T—0

be an exact sequence of A-modules.
(a) Show that Ass(N) C Ass(M).
(b) Show that Ass(M) C Ass(N)U Ass(T'). [Hint: If p € Ass(M) \ Ass(N),
then show that p € Ass(T').]

Solution:

(a) Since N — M is injective, we may regard N as a submodule of M. The
annihilator of any element of IV is the same as the annihilator of its image in
M, and hence Ass(N) C Ass(M). O
(b) Suppose p € Ass(M) ~ Ass(N). Let m € M be such that p = ann(m).
Since p ¢ Ass(N), m does not lie in N, and so the image ¢ of m in T is
non-zero. Moreover p = ann(m) C ann(t). Let x € ann(t). Then xm € N
and ann(zm) D ann(m) = p. This is a strict inclusion since p is not an
associated prime of N. Therefore there exists an element s € ann(xm) \ p.
Since sz € ann(m) = p and s ¢ p, it follows that x € p. Thus p = ann(¢). O

6. Prove that if A is Noetherian and M # 0 then Ass(M) # 0. [Hint: Apply
the maximality condition to the set of ideals which are annihilators of non-zero
elements.|

Solution: Following the hint, suppose a is a maximal member of the set if anni-
hilators of non-zero elements of M. Say a = ann(m). If a ¢ a then ann(am) = a,
since ann(am) D ann(m) = a, and a is maximal amongst annihilators of nonzero
elements of M. Accordingly, if ab € a and a ¢ a, then b € ann(am) = a. Thus a is
prime, and so a € Ass(M).

7. A zero divisor of M is an element a € A such that am = 0 for some non-zero
element m of M. Let ZD(M) denote the set of zero divisors of M. If A is
Noetherian, show that

o) = |J »

pEAss(M)

Solution: It is clear that ZD(M) = (J,,,ann(m). In particular we have the
inclusion Uyeagsany® € ZD(M). (For this inclusion, the Noetherian-ness of A
plays no role.)

Since A is Noetherian, if ¥ = {ann(m) | m # 0}, and X is the subset of
Y consisting of maximal elements of X, then every member of ¥ is contained in a
member of ¥,,.x. Thus ZD(M) = Upezmax p. From the solution to the previous
problem we see that Xpax C Ass(M), whence ZD(M) C U,eass(ar) b- O

8. Let A be Noetherian and M finitely generated.
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(a) Show that we have a descending chain of submodules

M=MyODM; D ---DM,=0
such that M;/M; .1 = A/p; for some p; € Spec A, i=0,...,n— 1.

(b) Show that Ass(M) is a finite set. [Hint: Use part (b) of Problem 5.]

Solution: We avoid annoying trivialities like M being zero. Note that if M is non

zZero,

(a)

(b)

so is A.

Equivalently, it is enough to show that there is an increasing sequence of A-
modules 0 = Ng C Ny C ...Ng = M such that N,N; 1 = A/q; for some
q; € Spec(A), i = 1,...,d. Pick ¢y in the nonempty set Ass(M). By part
(c) of Problem 4, we have an injective map A/q; — M. Let N be the
image of A/qq in M. Suppose we have N;, 1 < j < 7 such that Ny = 0,
Nj—l C Nj and Nj/Nj—lA/qj for _] = 1,.. 7Z If NL‘ = M we are done. If
not, pick q;41 € Ass(M/N;). We have a copy of A/q;1 in M/N;, and this
copy must be of the form N;i;/N; for a submodule N;;1 of M containing
N;. Since A is Noetherian and M is finitely generated, the ascending chain
Ny C Ny C ...N; C ... must become stationary, and we are done. (I
Let My, ..., M, and pi,...,p, be as in the statement of part (a). Applying
part (b) of Problem 5 successively to the exact sequences 0 — M; 1 — M; —
M;/M;11 — 0 we see that Ass(M) C {p1,...,bn}- O
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