

HW 4

Due date: March 3, 2022 (either online or in class)

Throughout this assignment, A is a ring, and M an A -module. As always, a *proper* submodule of M is a submodule which is not equal to M .

Annihilators and the support of a module. The *annihilator* $\text{ann}(m)$ of an element $m \in M$ is the set of elements $a \in A$ such that $am = 0$. It is clear that $\text{ann}(m)$ is an ideal of A . If we wish to specify the ring in which the annihilator is computed (M could be regarded as a module over any ring which maps to A), then we write $\text{ann}_A(M)$ for $\text{ann}(M)$. The *annihilator of M in A* is the ideal $\text{ann}(M)$, or more accurately, $\text{ann}_A(M)$, defined by the formula

$$\text{ann}(M) = \text{ann}_A(M) := \bigcap_{m \in M} \text{ann}(m).$$

If $\{m_\lambda \mid \lambda \in \Lambda\}$ is a set of generators of M , it is clear that $\text{ann}(M) = \bigcap_{\lambda \in \Lambda} \text{ann}(m_\lambda)$.

The *support of M over A* , or simply the *support of M* if the context is clear, denoted $\text{Supp}(M)$, is:

$$\text{Supp}(M) := \{\mathfrak{p} \in \text{Spec } A \mid M_{\mathfrak{p}} \neq 0\}.$$

Once again, if we wish to specify the ring A , we write $\text{Supp}_A(M)$ for the support of M over A .

1. If $\text{Supp}(M) = \emptyset$ then show that $M = 0$. **Hint:** Reduce to the case where M is finitely generated. Next show that there exist $f_\lambda \in A$, λ varying in some index set Λ , such that $\{D(f_\lambda) \mid \lambda \in \Lambda\}$ is an open cover of $X = \text{Spec } A$, and $M_{f_\lambda} = 0$ for every λ . Use the quasi-compactness of X to find elements $g_1, \dots, g_d \in A$, such that $g_i \in \text{Ann}(M)$ and $\cup_i D(g_i) = X$.]

2. Suppose M is finitely generated.

- Show that $V(\text{ann}(M)) = \text{Supp}(M)$.
- Show that

$$\sqrt{\text{ann}(M)} = \bigcap_{\mathfrak{p} \in \text{Supp}(M)} \mathfrak{p}.$$

Irreducible submodules. A submodule N of M is called *irreducible in M* (or simply *irreducible* if the context is clear) if it satisfies the following condition: If there exist two submodules N_1 and N_2 of M such that $N = N_1 \cap N_2$, then $N = N_1$ or $N = N_2$.

3. Let A be Noetherian and M finitely generated. Show that every proper submodule of M can be written as a finite intersection of irreducible modules. **Hint:** The proof of Proposition 2.1.3 of [Lecture 12](#) may help.]

Associated primes. A prime ideal \mathfrak{p} of A is said to be *associated to M* if there exists $m \in M$ such that $\mathfrak{p} = \text{ann}(m)$. We denote by $\text{Ass}_A(M)$ the collection of primes associated to M .¹ If the context is clear, we write $\text{Ass}(M)$ for $\text{Ass}_A(M)$.

4. (a) Let $M = A/\mathfrak{p}$, where \mathfrak{p} is a prime ideal of A . Show that for every element $m \in M \setminus \{0\}$, $\text{ann}(m) = \mathfrak{p}$. Conclude that $\text{Ass}_A(A/\mathfrak{p}) = \{\mathfrak{p}\}$.
- (b) Calculate $\text{Ass}_{A/\mathfrak{p}}(A/\mathfrak{p})$.
- (c) Prove that $\mathfrak{p} \in \text{Ass}(M)$ if and only if there is an injective A -module map from A/\mathfrak{p} into M .

5. Let

$$0 \longrightarrow N \longrightarrow M \longrightarrow T \longrightarrow 0$$

be an exact sequence of A -modules.

- (a) Show that $\text{Ass}(N) \subset \text{Ass}(M)$.
- (b) Show that $\text{Ass}(M) \subset \text{Ass}(N) \cup \text{Ass}(T)$. [Hint: If $\mathfrak{p} \in \text{Ass}(M) \setminus \text{Ass}(N)$, then show that $\mathfrak{p} \in \text{Ass}(T)$.]
6. Prove that if A is Noetherian and $M \neq 0$ then $\text{Ass}(M) \neq \emptyset$. [Hint: Apply the maximality condition to the set of ideals which are annihilators of non-zero elements.]

7. A *zero divisor* of M is an element $a \in A$ such that $am = 0$ for some non-zero element m of M . Let $\text{ZD}(M)$ denote the set of zero divisors of M . If A is Noetherian, show that

$$\text{ZD}(M) = \bigcup_{\mathfrak{p} \in \text{Ass}(M)} \mathfrak{p}.$$

8. Let A be Noetherian and M finitely generated.

- (a) Show that we have a descending chain of submodules

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = 0$$

such that $M_i/M_{i+1} \cong A/\mathfrak{p}_i$ for some $\mathfrak{p}_i \in \text{Spec } A$, $i = 0, \dots, n-1$.

- (b) Show that $\text{Ass}(M)$ is a finite set. [Hint: Use part (b) of Problem 5.]

¹Instead of “ \mathfrak{p} is a prime associated to M ” we often say “ \mathfrak{p} is an associated prime of M ”.