HW 3 - SOLUTIONS

Due date: Feb 17, 2022 (to be handed over in class)

Throughout, if A is a ring and X = Spec A. The conventions used in lectures
and the previous homework assignments remain in force. A reminder: if f € A,
then

D(f):={peX | f&p}
According to what was done (or will be done) in the lectures, D(f) is homeomorphic

to SpecAy and in fact D(f) is the homeomorphic image of Spec Ay under the natural
map Spec Ay — Spec A = X induced by the localization map A — Ay.

1. For a multiplicatively closed set S in A, we call the set
S:={ac A|abec S for some b c A}

the saturation of S. Let f,g € A and M € Mod,. Fix a multiplicative system
S.

(a) Show that S is multiplicatively closed and that ST'A=5"14

(b) Let T" be a multiplicative system such that S C 7' C S. Show that T = S.

In particular, conclude that S = S.

(c) Let T be another multiplicative system, and let ST be the multiplica-
tive system ST := {st € A| s € S, t € T}. Show that (ST)"'M =
T-YS~IM).

(d) Show that if d > 1 then Ma = M.

(e) Show that (My), = My,.

Solution: Most of the parts have easy solutions once we observe that S is the
complement of the union of prime ideals which are disjoint from S. If a ¢ S,
then by definition of S, (a) NS = (. Now Zornify. Let a be a maximal ideal of
A containing (a) and not meeting S. Standard arguments show that a is prime.
Conversely, if a € p where p is a prime ideal such that p NS = (), then ab € p
for every b € A, and hence ab ¢ S for any b € A, which means a ¢ S. Thus if
Y = {p € Spec(A4) | pN S = 0}, then

(%) §:A\Up.

(a) From () it is clear that S is a multiplicative system since it is the intersection
of multiplicative systems. Next, we know (from Problem 6 of HW 1) that
prime ideals of A which do not meet S are in bijective correspondence with
prime ideals of S™!'A, the correspondence being p — S~ 'p, with the inverse
map being q — i;l(q), where i4: A — S7'A is the localization map. It
follows that if ¢ € S then ¢/1 € S~'A is a unit in S~ A since, according to
(%), and our just given description of prime ideals in S™1A, it does not lie
in any prime ideal of S7'A. It is immediate that iq: A — S~'A has the
universal property of localization for gilA.

(b) Follows from ().



(c)

Consider the composite of localization maps
/NN S L BN LH(StA).

Let f = fiofi. It is clear that f(st) is a unit in 7-1(S71A) for every s € S
and t € T. Moreover, if ¢: A — B is a ring homomorphism such that ¢
sends every element in ST to a unit in B, then it sends every element of S
as well as every element of T" to a unit in B. We therefore have a unique ring
map ¢¥1: ST1A — B such that ¥y (fi(a)) = ¢(a) for every a € A. It follows
that wl(fl( ) = (b(t) is a unit for every ¢t € T'. Using this and the fact that
(fl( )7H(ST1A) =T1(S™A) we get a unique map ¢ (fi(T))"(S71A4) —

B such that 1o fo = 1. It follows that ¢of = ¢. We have to show the
uniqueness of 1.

We make a quick observation before returning to the proof. Under ring
homomorphisms, units get mapped to units, and the their multiplicative in-
verses to the multiplicative inverses of the images. In particular, if s € S,
then fo(fi(s)~1) = f(s) L.

If ¢/: T-*A(S~1A) — B is another ring homomorphism such that o f =
¢, then for a € A, and s € 5,

V' (fala/s)) = @' (f2(f1(s) 1) @) =¢'(F(5) ™" f(a))
=9/ (f(s) "' (f(a))
= ¢(s) "' ()
=11 (a/s).
Thus o fs = 1. By the universal property of T-1(S71A), this means
Y =1

2. (a) If f,g € A are such that D(f) = D(g) as subsets X, then for M € Mod 4,
My = M,.
(b) Let fa, @ € A, be a family of elements of A such that (f,) = A. Suppose
Sa € My, o € A is a family of elements satisfying s./1 = sg/1 (as
elements in My, ¢,) for o, € A. Show that there exists a unique element
m € M such that m/1 € My, equals s, for a € A.
Solution:

(a)

(b)

It is clear from the description of saturation in the formula (%) that the mul-
tiplicative systems {f™ | n > 0} and {g" | n > 0} have the same saturation,

namely
T=AN U p=AN U .
peD(f) pED(9)

Let us first prove that such an m € M is unique. It is enough to prove that if
m/1=0¢ Ay, forevery o € A, then m = 0. Let m € M be such an element.
We have non-negative integers n,, one for each ao € A, such that fll*m = 0.
Now (fZ* | a€ A) = A (see the first proposition on page 3 of Lecture 11).
There exist aq,...,2 € A and z1,...,2z, € A such that > ;_, Tifalt = 1.

Then
m=1-m= (lef;’“)m:o
i=1
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This proves uniqueness.

For the existence of m, let us use the quasi compactness of Spec(A4). We
have ay,...,a4 € A such that with g;:= f.,, we have Spec(A4) = UL D(g;).
Since Age = Ay, for alle > 1 and ¢ =1,...,d, replacing all the g; by suitable
powers, we may assume there exist my,...,mg € M such that

Sa; = Mi/gi, i=1,....d.

In Spec(Ay,y,) we have m;/g; = m;/g;, whence there exist n;; > 0 such that
(9i95)™ gjmi = (9i9;)™ gimyj, 1 < 4,7 < d. Set n = max n;;. Then
1<i,j<d
(1) g gim = g7 gymy, 1< <d

Now (gPtt ... ,g(’}“) = A, hence there exist a; € A such that

d

on+1
Za]gj =1.
j=1

In particular, using (1), we get

d d
n o n+1 n _ n+l n
%W—(E%%)%W—% > ajgim;.
j=1 j=1

Let m = Zj’:l ajg;m;. The relations g;'m; = g?Hm established above shows

that m/1 =m;/g; in Ag, fori=1,...,d.

We have yet to establish that in Ay , m/1 = s, for every a € A (we
have only established this for & = «;, i = 1,...,d). So suppose o € A. Let
o=m/l e Ay . Fori=1,...,d, let g; be the image of g; in Ay . Then
(G1,-..,94) = Ay,. The image of m in (Ay, )z = Af.q = (Ag,) s, is, by the
transitivity of localization (i.e. part (c) of Problem 1), the image of s, in
Ay 9. = (Ay.,)g,-Thus the image of 0 — so in Ay 4, is zero for i = 1,...d.
By the argument given for the uniqueness of m in the first paragraph of this
proof, we see that o = s,.

3. Let A — B be a ring homomorphism.
(a) Show that A®4 M = M for all M € Mod 4.
(b) Let M € Mod,4. Show that B ®4 M € Modp, where the scalar multipli-
cation is such that b()/ @ m) = (bb') @ m, b,/ € B, m € M.
(¢) For M,N € Modg and T € Mod 4, show that we have a the following
Hom—® adjointness:

Homp (M, Homyu (N, T)) = Homu(M ®p N, T).

Solution:

(a) This is clear. The scalar multiplication map S: A x M — M is by definition
bilinear, and if B: A x M — T is a bilinear map over A, then clearly m
B(1,m) defines an A-linear map ¢: M — T such that oS = B. Moreover
if u: M — T is any A-map such that woS = B, then u(m) = u(S(1,m)) =
B(1,m), whence u = ¢.
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(b) Let b € B. The A-bilinear map B x M — B®4 M given by (b',m) — (bb',m)
gives us a well defined map A-linear map v(b): B ®4 M — B ®4 M given
by v(b)(>,(ba @ ma)) = Y, (bby) @ mq. It is clear, since multiplication is
distributive and ® is bilinear, that v(by + bs) = v(b1) + v(b2). Moreover,
v(b), being an A-module map, respects addition in B ® 4 M. Finally, v(1)
is obviously the identity map. Collecting these facts together, we see that
(b, >0 ba @mg) = v(b)(3,, ba ® my) defines a scalar product

Bx (B®s M) — Bos M.

(c) This is mutatis mutandis the proof given in class for B = A. Details left to
you.

4. An A-module E is called injective if Homy(—, E) is an exact functor (i.e., it
transforms exact sequences of A-modules into exact sequences of A-modules).
Let A — B be aring map and E an injective A-module. Show that Hom 4 (B, E)
is an injective B-module. [Hint: Use the above Hom-®. adjointness. Note that
we have already seen in class that Hom 4 (B, E) is a B-module.]

Solution: First note that a sequence of B-modules
s MUY M M

is exact if and only if when thought of as a sequence of A-modules it is exact.
Now

Homp(—, Homa (B, E)) = Homu(— ®p B, E) = Homa(—, E).

The last functor is exact, and we are done.



