
HW 3 - SOLUTIONS

Due date: Feb 17, 2022 (to be handed over in class)

Throughout, if A is a ring and X = SpecA. The conventions used in lectures
and the previous homework assignments remain in force. A reminder: if f ∈ A,
then

D(f) := {p ∈ X | f /∈ p}.
According to what was done (or will be done) in the lectures, D(f) is homeomorphic
to SpecAf and in factD(f) is the homeomorphic image of SpecAf under the natural
map SpecAf → SpecA = X induced by the localization map A→ Af .

1. For a multiplicatively closed set S in A, we call the set

S := {a ∈ A | ab ∈ S for some b ∈ A}

the saturation of S. Let f, g ∈ A and M ∈ ModA. Fix a multiplicative system
S.
(a) Show that S is multiplicatively closed and that S

−1
A = S−1A.

(b) Let T be a multiplicative system such that S ⊂ T ⊂ S. Show that T = S.

In particular, conclude that S = S.
(c) Let T be another multiplicative system, and let ST be the multiplica-

tive system ST := {st ∈ A | s ∈ S, t ∈ T}. Show that (ST )−1M =
T−1(S−1M).

(d) Show that if d ≥ 1 then Mfd = Mf .
(e) Show that (Mf )g = Mfg.

Solution: Most of the parts have easy solutions once we observe that S is the
complement of the union of prime ideals which are disjoint from S. If a /∈ S,
then by definition of S, 〈a〉 ∩ S = ∅. Now Zornify. Let a be a maximal ideal of
A containing 〈a〉 and not meeting S. Standard arguments show that a is prime.
Conversely, if a ∈ p where p is a prime ideal such that p ∩ S = ∅, then ab ∈ p
for every b ∈ A, and hence ab /∈ S for any b ∈ A, which means a /∈ S. Thus if
Σ = {p ∈ Spec(A) | p ∩ S = ∅}, then

(∗) S = Ar
⋃
p∈Σ

p.

(a) From (∗) it is clear that S is a multiplicative system since it is the intersection
of multiplicative systems. Next, we know (from Problem 6 of HW 1) that
prime ideals of A which do not meet S are in bijective correspondence with
prime ideals of S−1A, the correspondence being p 7→ S−1p, with the inverse
map being q 7→ i−1

A (q), where iA : A → S−1A is the localization map. It

follows that if t ∈ S then t/1 ∈ S−1A is a unit in S−1A since, according to
(∗), and our just given description of prime ideals in S−1A, it does not lie
in any prime ideal of S−1A. It is immediate that iA : A → S−1A has the

universal property of localization for S
−1
A.

(b) Follows from (∗).
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(c) Consider the composite of localization maps

A
f1−−−−→ S−1A

f2−−−−→ T−1(S−1A).

Let f = f1 ◦f1. It is clear that f(st) is a unit in T−1(S−1A) for every s ∈ S
and t ∈ T . Moreover, if φ : A → B is a ring homomorphism such that φ
sends every element in ST to a unit in B, then it sends every element of S
as well as every element of T to a unit in B. We therefore have a unique ring
map ψ1 : S−1A → B such that ψ1(f1(a)) = φ(a) for every a ∈ A. It follows
that ψ1(f1(t)) = φ(t) is a unit for every t ∈ T . Using this and the fact that
(f1(T )−1(S−1A) = T−1(S−1A) we get a unique map ψ : (f1(T ))−1(S−1A)→
B such that ψ ◦f2 = ψ1. It follows that ψ ◦f = φ. We have to show the
uniqueness of ψ.

We make a quick observation before returning to the proof. Under ring
homomorphisms, units get mapped to units, and the their multiplicative in-
verses to the multiplicative inverses of the images. In particular, if s ∈ S,
then f2(f1(s)−1) = f(s)−1.

If ψ′ : T−1A(S−1A)→ B is another ring homomorphism such that ψ ◦f =
φ, then for a ∈ A, and s ∈ S,

ψ′(f2(a/s)) = ψ′(f2(f1(s)−1)f(a)) =ψ′(f(s)−1f(a))

= ψ′(f(s))−1ψ′(f(a))

= φ(s)−1φ(a)

= ψ1(a/s).

Thus ψ′ ◦f2 = ψ1. By the universal property of T−1(S−1A), this means
ψ′ = ψ.

2. (a) If f, g ∈ A are such that D(f) = D(g) as subsets X, then for M ∈ ModA,
Mf = Mg.

(b) Let fα, α ∈ Λ, be a family of elements of A such that 〈fα〉 = A. Suppose
sα ∈ Mfα , α ∈ Λ is a family of elements satisfying sα/1 = sβ/1 (as
elements in Mfαfβ ) for α, β ∈ Λ. Show that there exists a unique element
m ∈M such that m/1 ∈Mfα equals sα for α ∈ Λ.

Solution:

(a) It is clear from the description of saturation in the formula (∗) that the mul-
tiplicative systems {fn | n ≥ 0} and {gn | n ≥ 0} have the same saturation,
namely

T = Ar
⋃

p∈D(f)

p = Ar
⋃

p∈D(g)

p.

(b) Let us first prove that such an m ∈M is unique. It is enough to prove that if
m/1 = 0 ∈ Afα for every α ∈ Λ, then m = 0. Let m ∈M be such an element.
We have non-negative integers nα, one for each α ∈ Λ, such that fnαα m = 0.
Now 〈fnαα | α ∈ Λ〉 = A (see the first proposition on page 3 of Lecture 11).

There exist α1, . . . , αe ∈ Λ and x1, . . . , xe ∈ A such that
∑e
i=1 xif

nαi
αi = 1.

Then

m = 1 ·m =
( e∑
i=1

xif
nαi
αi

)
m = 0.
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This proves uniqueness.
For the existence of m, let us use the quasi compactness of Spec(A). We

have α1, . . . , αd ∈ Λ such that with gi := fαi , we have Spec(A) = ∪di=1D(gi).
Since Agei = Agi for all e ≥ 1 and i = 1, . . . , d, replacing all the gi by suitable
powers, we may assume there exist m1, . . . ,md ∈M such that

sαi = mi/gi, i = 1, . . . , d.

In Spec(Agigj ) we have mi/gi = mj/gj , whence there exist nij ≥ 0 such that
(gigj)

nijgjmi = (gigj)
nijgimj , 1 ≤ i, j ≤ d. Set n = max

1≤i,j≤d
nij . Then

(†) gn+1
j gni mi = gn+1

i gnjmj , 1 ≤ i, j ≤ d.

Now 〈gn+1
1 , . . . , gn+1

d 〉 = A, hence there exist aj ∈ A such that

d∑
j=1

ajg
n+1
j = 1.

In particular, using (†), we get

gni mi =
( d∑
j=1

ajg
n+1
j

)
gni mi = gn+1

i

d∑
j=1

ajg
n
jmj .

Let m =
∑d
j=1 ajg

n
jmj . The relations gni mi = gn+1

i m established above shows

that m/1 = mi/gi in Agi for i = 1, . . . , d.
We have yet to establish that in Afα , m/1 = sα for every α ∈ Λ (we

have only established this for α = αi, i = 1, . . . , d). So suppose α ∈ Λ. Let
σ = m/1 ∈ Afα . For i = 1, . . . , d, let ḡi be the image of gi in Afα . Then
〈ḡ1, . . . , ḡd〉 = Afα . The image of m in (Afα)ḡi = Afαgi = (Agi)fα is, by the
transitivity of localization (i.e. part (c) of Problem 1), the image of sα in
Afαgi = (Afα)ḡi .Thus the image of σ − sα in Afαgi is zero for i = 1, . . . d.
By the argument given for the uniqueness of m in the first paragraph of this
proof, we see that σ = sα.

3. Let A→ B be a ring homomorphism.
(a) Show that A⊗AM = M for all M ∈ ModA.
(b) Let M ∈ ModA. Show that B ⊗A M ∈ ModB , where the scalar multipli-

cation is such that b(b′ ⊗m) = (bb′)⊗m, b, b′ ∈ B, m ∈M .
(c) For M,N ∈ ModB and T ∈ ModA, show that we have a the following

Hom–⊗ adjointness:

HomB(M, HomA(N, T )) −→∼ HomA(M ⊗B N, T ).

Solution:

(a) This is clear. The scalar multiplication map S : A×M →M is by definition
bilinear, and if B : A ×M → T is a bilinear map over A, then clearly m 7→
B(1,m) defines an A-linear map ϕ : M → T such that ϕ◦S = B. Moreover
if u : M → T is any A-map such that u◦S = B, then u(m) = u(S(1,m)) =
B(1,m), whence u = ϕ.
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(b) Let b ∈ B. The A-bilinear map B×M → B⊗AM given by (b′,m) 7→ (bb′,m)
gives us a well defined map A-linear map ν(b) : B ⊗A M → B ⊗A M given
by ν(b)(

∑
α(bα ⊗mα)) =

∑
α(bbα) ⊗mα. It is clear, since multiplication is

distributive and ⊗ is bilinear, that ν(b1 + b2) = ν(b1) + ν(b2). Moreover,
ν(b), being an A-module map, respects addition in B ⊗A M . Finally, ν(1)
is obviously the identity map. Collecting these facts together, we see that
(b,
∑
α bα ⊗mα) 7→ ν(b)(

∑
α bα ⊗mα) defines a scalar product

B × (B ⊗AM) −→ B ⊗AM.

(c) This is mutatis mutandis the proof given in class for B = A. Details left to
you.

4. An A-module E is called injective if HomA(−, E) is an exact functor (i.e., it
transforms exact sequences of A-modules into exact sequences of A-modules).
Let A→ B be a ring map and E an injective A-module. Show that HomA(B, E)
is an injective B-module. [Hint: Use the above Hom–⊗. adjointness. Note that
we have already seen in class that HomA(B, E) is a B-module.]

Solution: First note that a sequence of B-modules

· · · →M i−1 →M i →M i+1 → . . .

is exact if and only if when thought of as a sequence of A-modules it is exact.
Now

HomB(−, HomA(B,E)) −→∼ HomA(−⊗B B, E) = HomA(−, E).

The last functor is exact, and we are done.
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