

HW 3

Due date: Feb 17, 2022 (to be handed over in class)

Throughout, if A is a ring and $X = \text{Spec } A$. The conventions used in lectures and the previous homework assignments remain in force. A reminder: if $f \in A$, then

$$D(f) := \{p \in X \mid f \notin p\}.$$

According to what was done (or will be done) in the lectures, $D(f)$ is homeomorphic to $\text{Spec } A_f$ and in fact $D(f)$ is the homeomorphic image of $\text{Spec } A_f$ under the natural map $\text{Spec } A_f \rightarrow \text{Spec } A = X$ induced by the localization map $A \rightarrow A_f$.

1. For a multiplicatively closed set S in A , we call the set

$$\overline{S} := \{a \in A \mid ab \in S \text{ for some } b \in A\}$$

the *saturation* of S . Let $f, g \in A$ and $M \in \text{Mod}_A$. Fix a multiplicative system S .

- (a) Show that \overline{S} is multiplicatively closed and that $\overline{S}^{-1}A = S^{-1}A$.
- (b) Let T be a multiplicative system such that $S \subset T \subset \overline{S}$. Show that $\overline{T} = \overline{S}$.
In particular, conclude that $\overline{\overline{S}} = \overline{S}$.
- (c) Let T be another multiplicative system, and let ST be the multiplicative system $ST := \{st \in A \mid s \in S, t \in T\}$. Show that $(ST)^{-1}M = T^{-1}(S^{-1}M)$.
- (d) Show that if $d \geq 1$ then $M_{f^d} = M_f$.
- (e) Show that $(M_f)_g = M_{fg}$.

2. (a) If $f, g \in A$ are such that $D(f) = D(g)$ as subsets X , then for $M \in \text{Mod}_A$, $M_f = M_g$.

(b) Let f_α , $\alpha \in \Lambda$, be a family of elements of A such that $\langle f_\alpha \rangle = A$. Suppose $s_\alpha \in M_{f_\alpha}$, $\alpha \in \Lambda$ is a family of elements satisfying $s_\alpha/1 = s_\beta/1$ as elements in $M_{f_\alpha f_\beta}$ for $\alpha, \beta \in \Lambda$. Show that there exists a unique element $m \in M$ such that $m/1 \in M_{f_\alpha}$ equals s_α for $\alpha \in \Lambda$.

Remark: Part (a) gives us another way of seeing that $M_f = M_{f^d}$.

3. Let $A \rightarrow B$ be a ring homomorphism.

- (a) Show that $A \otimes_A M = M$ for all $M \in \text{Mod}_A$.
- (b) Let $M \in \text{Mod}_A$. Show that $B \otimes_A M \in \text{Mod}_B$, where the scalar multiplication is such that $b(b' \otimes m) = (bb') \otimes m$, $b, b' \in B$, $m \in M$.
- (c) For $M, N \in \text{Mod}_B$ and $T \in \text{Mod}_A$, show that we have the following Hom- \otimes adjointness:

$$\text{Hom}_B(M, \text{Hom}_A(N, T)) \xrightarrow{\sim} \text{Hom}_A(M \otimes_B N, T).$$

4. An A -module E is called *injective* if $\text{Hom}_A(-, E)$ is an exact functor (i.e., it transforms exact sequences of A -modules into exact sequences of A -modules). Let $A \rightarrow B$ be a ring map and E an injective A -module. Show that $\text{Hom}_A(B, E)$ is an injective B -module. **[Hint:** Use the above Hom- \otimes adjointness. Note that we have already seen in class that $\text{Hom}_A(B, E)$ is a B -module.]