HW-2 SOLUTIONS

Throughout, if A is a ring' then Mod 4 denotes the category of A-modules. If
M,N € Mod,, we will often use the phrase “f: M — N is an A-map” as a
shorthand for “f: M — N is a homomorphism of A-modules”.

For an element a € A and an A-module M, p,: M — M will denote the A-map
x — azx. The map p, is often called the “multiplication by a” map.

Direct Limits. Let A be a partially ordered set, with partial order <. We say A
is a directed set if given a and 8 in A, there exists v € A such that a < v and
B < . Now let A be a ring and (A, <) a directed set. A direct system over the
directed set A of A-modules is a collection of A-modules {M,, | & € A} together
with A-maps pag: My — Mg, one for every pair of indices («, §) such that o <
satisfying the following relations:

(1) Haa = idMaa o€ Av

(i) fay = HByoptas Whenever o < 5 < .
One often writes (M) or (My)aea for the collection {M,, | a« € A} as well as for
the direct system M = (M, ftag), suppressing the piog. Now suppose M = (M,)
is a direct system over A. The? direct limat of M is an A-module M together with
a collection of A-maps pq: My — M, one for each a € A, such that po = pgeptas
for every a < f3; this data satisfying the following condition: If T € Mod 4, and one
has A-maps vo: My = T, a € A satisfying v, = vgopuas whenever a < 3, then
there exists a unique A-map v: M — T such that Vo = Vo, for every a € A. (We
will soon change notation, and use the symbol llg M, for the direct limit.)

In what follows assume that a direct limit alw{éys exists for a direct system, and
for definiteness, fix one for each direct system.

1. Show that (M , la)a 1S unique up to unique isomorphism. In other words, show
that is (M*, uf), is another pair enjoying the same universal property that
(M, pio)a does, then there is a unique isomorphism ¢: M —= M* such that
Po = o fla-

Solution: The universal property of (1\7 o) gives us a unique A-map p: M — M*
such that the following diagram commutes for every «:

M,
l Ha
Mo
M ——= M*
%2}

1According to our conventions, commutative and with identity.
2The definite article “the” will be justified in the problems below.
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Similarly, the universal property for (M*, u*) gives us a unique A-map ¢: M* —
M such that the following diagram commutes for each a:

M,
o, i
Ha
M* ——> M

P
Combining the two we have commutative diagrams, one for each a:

M,

y J/ /JI :‘(
Ha

M*——M — M*

P

Thus (@otp)opt = pk for every a. On the other hand 1p+opf = pk. for every

«. By the universal property of (M*, ) there is exactly one solution for w in the
system of equations wopu} = pk, a € A, and hence o) = 1y~

By symmetry o = 147 0

Since “the” direct limit is unique up to unique isomorphism, we will regard it as
unique, and write
i
for the above direct limit. As with so much of mathematics (think groups), we will
write hin> M, for the module M as well as the data (M, 14 )a-

For Problem 2 below, let (M,)aca be a direct system of A-modules. Let
[loeca Mo be the disjoint union of the My, ie. [[,cp Mo = Upeaia} x M.
For (o, mq), (8, mg) in [], M, write (o, mqo) ~ (8, mg) if there exists a v >~ o, 8
such that pa(ma) = pgy(mg). It is easy to see that ~ is an equivalence relation
on [], M,. Assume this in what follows (and prove it for yourself, but don’t show
me the work). Let [a, m,] denote the equivalence class of («, my). One can define
an A-module structure on M = ([[, M)/~ by setting

[, ma] + [B, mp] = [V, tay (Ma) + pay (mp)]
for any v >~ a, 8, and by setting
CL[O&, ma] = [O" ama}

for a € A. Tt is easy to see (and again — you don’t have to show this to me, but
do work it out for yourself) that the addition and scalar multiplication on M given
above is well-defined and defines an A-module structure on M. You may use all
these easily proven facts in what follows.

2. For o € A, let v, : M, — M be the map mg, — [, mg].
(a) Show that each v, is an A-map.
(b) Show that for a < 3, vy = Vgopiag.
(c) Show that if v, (x) = 0 for some z € M, then for some 5 > a, pop(x) = 0.
(d) Show that the unique map v: 11_m> M, — M, arising from the universal
property of direct limits, is an isgmorphism.
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Solution: Parts (a), (b) and (c) are straightforward, so I will concentrate on (d).

Suppose [o, mq] = [B, mg]. Then there exists v > «, 8 such that pa(ma) =
tpy(mg). Denote the common element in M, defined by the this equality by
My. Now fiq(Ma) = fiy(fay(Mma)) = py(my). The same reasoning shows that
pg(mg) = py(my). In particular pq (ma) = ps(mg). We have thus proved that the
map

0: M — M
given by
([, ma]) = pa(ma),

is well-defined. It is easy to see this is an A-map (though you are expected to spell
this out in greater detail than I have). Now for m, € M,, we have 0(v,(mg)) =
0([ae, ma]) = pra(me), whence Gov, = p, for every index . This means that for
a € A, we have (ov)opy = 0o(vopy) = Oovy = pin. Thus u = fov is a solution
to the system of equations wop, = o, @ € A. By the universal property of direct
limits, there is only solution to this system, namely u = 111_m> M, - 1t follows that

fov is the identity map on h£1> M,,.
On the other hand, for [oz,uma] € M, we have

V({0 ma])) = V(pia(ma)) = (vopa)(ma)
= va(mey)
= [, mq].

Thus vef = 1y,. [l

Tensor products. Let A be a ring and M, N, T € Mods. A bilinear map of A-
modules from M x N to T is amap B: M x N — T such that for every m,m’ € M,
n,n’ € N and a € A we have
(i) B(m+m/, n) = B(m,n) + B(m/, n);

(ii) B(m,n+n') = B(m,n) + B(m,n');

(iii) B(am, n) = B(m, an) = aB(m,n).
The tensor product of M and N over A is an A-module M ®4 N together with a
bilinear map of A-modules B, : M x N — M ® 4 N such that given a bilinear map of
A-modules B: M xN — T, there exists a unique an A-module map ©: M@ N — A
satisfying B = 1o B,,. In what follows, assume that such a pair (M®4 N, B,,) exists,
and fix one such pair for definiteness.

3. Show that (M ®4 N, B,) is unique up to unique isomorphism, i.e. if (M x N, B*)
is another pair, with B*: M x N — M % N a bilinear map of A-modules en-
joying the universal property that (M ®4 N, B,) does, then there is a unique
isomorphism of A-modules ¢: M ®4 N = M % N such that poB, = B*.

Solution: The universal property of (M ®4 N, B,,) give us a unique map ¢: M ® 4
N =5 M % N such that ¢oB, = B*. By symmetry, the universal property of
M « N, B*) gives us unique map ¢: M+« N — M ® 4 B such that o B* = B,,. Thus
(op)oB, = B, and (po1))o B* = B*. However, the by the universal property of
(M®aN, B,) and M*N, B*), the equations xo B, = B, yo B* = B* admit exactly
one solution each, namely v = 1y/g,n and y = 1pn. Thus o and o) are
both identity maps. O
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4. Write m ® n for By(m, n) € M ®4 N. Show that M ®4 N is generated as
an A-module by elements of the form m ® n. You are expected to use the
universal property of tensor products and not any construction you might have
seen. [Hint: Let U be the submodule of M ® 4 N generated by the m ® n. See
if you can prove that U has the required universal property.]

Solution: Clearly U D B, (M x N). Let B’: M x N — U be the map induced
by By, i.e. B'(m, n) = By(m, n) for (m,n) € M x N. It is quite evident that
(U, B’) has the required universal property of tensor products.®> If the incliusion
B C M ®a N is denoted by i: U —+ M ®4 N, then ioc B’ = B,. By the universal
property of B,, we also have a map ¢: M ®4 N — U usch that 9o B, = B’. By a
now familiar argument, oy is the identity on M ®4 N and @oi is the identity on
U. This means the inclusion i: U < M ® 4 N is an isomorphism, i.e. U is equal to
M ®a N. O

5. Show using the universal property of tensor products and the universal property
of localizations that if S is a multiplicative system in a ring A, and M € Mod4,
then 7'M = S™1A®4 M. [Hint: Define a bilinear map S™'A x M — S~1M
and show that it has the universal property for tensor products. To do that, you
may need to verify that that if one has a bilinear map M x N — T then on the
submodule of T' generated by image of M X N, ug is an isomorphism for every
s€ S|

Solution: Let m € M and suppose a/s and a'/s’ are two representations of an
element z € S7'A. We claim that ¢ = “;’/". The equality a/s = a'/s" gives

us an element ¢ € S such that ts’a = tsa’. This means ts'am = tsa’m, whence
(am)/s = (a’m)/s’ as asserted. This means that the map B*: S~*Ax M — S™1M

given by the formula
e am
B (7, m) = —

S S
is well-defined. It is easy to see that B* is bilnear over A.

Next suppose B: M x N — T is a bilnear map over A. Define p: S™'M — T
by the rule ¢(m/s) = B(1/s, m). We have to show (among other things) that ¢ is
well-defined. To that end, suppose m/s = m'/s’. We have an element t € S such
that ts'm = tsm’. By the A-bilinearity of B, we get

!

1 t 1
B(f,m):B<—8 ,m)zB( ,ts’m)
s ts's ts's

This proves ¢ is well-defined. Moreover, for m,m’ € M, s,s' € S, and a € A,
we have o(Z + o) = p(smdsem ) — B(L ¢'m + sam’) = B(ZL;, s'm) +

aB(L, sm/) = B(2, m) + aB(&, m') = o(2) + acp(Z—L,/). In other words, ¢ is

A-linear. Now ¢(B*(a/s,m)) = ¢((am)/s) = B(1/s, am) = B(a/s, m). Thus
0o B* — B.

30f course, you are expected to provide more details



It remains to show that ¢ is the unique map with the above property, i.e. we
have to show that if ¢: S™'M — T is an A-map such that 1oty = B, then ¢ = .
Let ¢ be such a map. Then ¥(m/s) =¥ (B*(1/s, m) = B(1/s, m) = ¢(m/s). O

Localization and direct limits. Certain localizations can be regarded as direct
limits.

6. Let A be aring, f an element of A, and T" an A-module. Define a direct system
T = (Th, tm,n), where the indices vary over non-negative integers (with its
natural structure as a directed set), by T, = T for all n > 0; and for m < n,
M, Ty — T, is the map z — f"~"z. Show that hin> T, = Ty, where T} is

the localization of T at the multiplicative system {f™ |'n > 0}.

Solution: Let y,,: T,, — Ty be the map x +— x/f™. It is clear that (ot = tim
for 0 < m < n. Next suppose Y € Mod 4 and we have a family of A-maps, v, : T,, —
Y, one for each n > 0, such that vy, oy, n = vy for 0 <m <n. If¢: Ty — Y is an
A-map such that v, = tpou, for every n > 0, then ¥(z/f") = ¥(un(x)) = vo(x),
which means there is at most one 1 such that the relation v,, = topu, holds for
every n > 0.

We will now show that for Y and {v,}, as above, such a map 1 exists. This
is equivalent to showing that z/f™ — v,(z) is a well defined A-map on Ty. To
that end, suppose z/f™ = 2’/ f™, and for definiteness, assume m < n. There exists
d > 0 such that f¢(f™x — f"z’) = 0. In other words, we have fm+dy = frtdy’.
Regard = as an element of T,, and z’ as an element of T;,. We have just proven
that fin mtntd(T) = tm,men+a(x’). It follows that

vp(z) = Vm+n+d(/4n7mr+n+d(x)) = Vm+n+d(,um7m+n+d(x/)) = Vm(x/)~
Thus the map x/f" — v, () is a well-defined map on Ty taking values in Y.
Let ¢: Ty — Y denote this map. It is clear that o, = v, for every n > 0.
Next we will show that ¢ is an A-map. This is seen from the following compu-
tation for z, 2’ € T, n,m >0, and a € A:

" <an + a;n> _y <W> = V(™2 + afe)

- V77L+7L(fm$) + aV77L+71,(fnx,)

o) e )
T x’
_w<f”> +a1/)<fm>.

It follows that (T, ptn,) has the universal property required of a direct limit. O
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