
HW-2 SOLUTIONS

Throughout, if A is a ring1 then ModA denotes the category of A-modules. If
M,N ∈ ModA, we will often use the phrase “f : M → N is an A-map” as a
shorthand for “f : M → N is a homomorphism of A-modules”.

For an element a ∈ A and an A-module M , µa : M →M will denote the A-map
x 7→ ax. The map µa is often called the “multiplication by a” map.

Direct Limits. Let Λ be a partially ordered set, with partial order ≺. We say Λ
is a directed set if given α and β in Λ, there exists γ ∈ Λ such that α ≺ γ and
β ≺ γ. Now let A be a ring and (Λ, ≺) a directed set. A direct system over the
directed set Λ of A-modules is a collection of A-modules {Mα | α ∈ Λ} together
with A-maps µαβ : Mα →Mβ , one for every pair of indices (α, β) such that α ≺ β
satisfying the following relations:

(i) µαα = idMα
, α ∈ Λ;

(ii) µαγ = µβγ ◦µαβ whenever α ≺ β ≺ γ.

One often writes (Mα) or (Mα)α∈Λ for the collection {Mα | α ∈ Λ} as well as for
the direct system M = (Mα, µαβ), suppressing the µαβ . Now suppose M = (Mα)

is a direct system over Λ. The2 direct limit of M is an A-module M̃ together with

a collection of A-maps µα : Mα → M̃ , one for each α ∈ Λ, such that µα = µβ ◦µαβ
for every α ≺ β; this data satisfying the following condition: If T ∈ ModA, and one
has A-maps να : Mα → T , α ∈ Λ satisfying να = νβ ◦µαβ whenever α ≺ β, then

there exists a unique A-map ν : M̃ → T such that να = ν ◦µα for every α ∈ Λ. (We
will soon change notation, and use the symbol lim−−→α

Mα for the direct limit.)

In what follows assume that a direct limit always exists for a direct system, and
for definiteness, fix one for each direct system.

1. Show that (M̃, µα)α is unique up to unique isomorphism. In other words, show
that is (M∗, µ∗α)α is another pair enjoying the same universal property that

(M̃, µα)α does, then there is a unique isomorphism ϕ : M̃ −→∼ M∗ such that
µ∗α = ϕ◦µα.

Solution: The universal property of (M̃, µα) gives us a unique A-map ϕ : M̃ →M∗

such that the following diagram commutes for every α:

Mα

µ∗α

!!C
CC

CC
CC

C

µα
��
M̃

ϕ
// M∗

1According to our conventions, commutative and with identity.
2The definite article “the” will be justified in the problems below.

1



Similarly, the universal property for (M∗, µ∗α) gives us a unique A-map ψ : M∗ →
M̃ such that the following diagram commutes for each α:

Mα

µ∗α

}}{{
{{
{{
{{
µα
��

M∗
ψ
// M̃

Combining the two we have commutative diagrams, one for each α:

Mα

µ∗α

!!C
CC

CC
CC

C

µα
��

µ∗α

}}{{
{{
{{
{{

M∗
ψ
// M̃

ϕ
// M∗

Thus (ϕ◦ψ)◦µ∗α = µ∗α for every α. On the other hand 1M∗ ◦µ
∗
α = µ∗α. for every

α. By the universal property of (M∗, µ∗α) there is exactly one solution for u in the
system of equations u◦µ∗α = µ∗α, α ∈ Λ, and hence ϕ◦ψ = 1M∗ .

By symmetry ψ ◦ϕ = 1
M̃

. �

Since “the” direct limit is unique up to unique isomorphism, we will regard it as
unique, and write

lim−−→α
Mα

for the above direct limit. As with so much of mathematics (think groups), we will

write lim−−→α
Mα for the module M̃ as well as the data (M̃, µα)α.

For Problem 2 below, let (Mα)α∈Λ be a direct system of A-modules. Let∐
α∈ΛMα be the disjoint union of the Mα, i.e.

∐
α∈ΛMα =

⋃
α∈Λ{α} × Mα.

For (α, mα), (β, mβ) in
∐
αMα, write (α,mα) ∼ (β,mβ) if there exists a γ � α, β

such that µαγ(mα) = µβγ(mβ). It is easy to see that ∼ is an equivalence relation
on
∐
αMα. Assume this in what follows (and prove it for yourself, but don’t show

me the work). Let [α,mα] denote the equivalence class of (α,mα). One can define
an A-module structure on M = (

∐
αMα)/∼ by setting

[α,mα] + [β,mβ ] := [γ, µαγ(mα) + µβγ(mβ)]

for any γ � α, β, and by setting

a[α,mα] := [α, amα]

for a ∈ A. It is easy to see (and again – you don’t have to show this to me, but
do work it out for yourself) that the addition and scalar multiplication on M given
above is well-defined and defines an A-module structure on M . You may use all
these easily proven facts in what follows.

2. For α ∈ Λ, let να : Mα →M be the map mα 7→ [α, mα].
(a) Show that each να is an A-map.
(b) Show that for α ≺ β, να = νβ ◦µαβ .
(c) Show that if να(x) = 0 for some x ∈Mα, then for some β � α, µαβ(x) = 0.
(d) Show that the unique map ν : lim−−→α

Mα → M , arising from the universal

property of direct limits, is an isomorphism.
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Solution: Parts (a), (b) and (c) are straightforward, so I will concentrate on (d).
Suppose [α, mα] = [β, mβ ]. Then there exists γ � α, β such that µαγ(mα) =

µβγ(mβ). Denote the common element in Mγ defined by the this equality by
mγ . Now µα(mα) = µγ(µαγ(mα)) = µγ(mγ). The same reasoning shows that
µβ(mβ) = µγ(mγ). In particular µα(mα) = µβ(mβ). We have thus proved that the
map

θ : M → M̃

given by
θ([α, mα]) = µα(mα),

is well-defined. It is easy to see this is an A-map (though you are expected to spell
this out in greater detail than I have). Now for mα ∈ Mα, we have θ(να(mα)) =
θ([α, mα]) = µα(mα), whence θ◦να = µα for every index α. This means that for
α ∈ Λ, we have (θ◦ν)◦µα = θ◦(ν ◦µα) = θ◦να = µα. Thus u = θ◦ν is a solution
to the system of equations u◦µα = µα, α ∈ Λ. By the universal property of direct
limits, there is only solution to this system, namely u = 1lim−−→α

Mα
. It follows that

θ◦ν is the identity map on lim−−→α
Mα.

On the other hand, for [α, mα] ∈M , we have

ν(θ([α, mα])) = ν(µα(mα)) = (ν ◦µα)(mα)

= να(mα)

= [α, mα].

Thus ν ◦θ = 1M . �

Tensor products. Let A be a ring and M,N, T ∈ ModA. A bilinear map of A-
modules from M×N to T is a map B : M×N → T such that for every m,m′ ∈M ,
n, n′ ∈ N and a ∈ A we have

(i) B(m+m′, n) = B(m,n) +B(m′, n);
(ii) B(m,n+ n′) = B(m,n) +B(m,n′);

(iii) B(am, n) = B(m, an) = aB(m,n).

The tensor product of M and N over A is an A-module M ⊗A N together with a
bilinear map of A-modules Bu : M×N →M⊗AN such that given a bilinear map of
A-modulesB : M×N → T , there exists a unique anA-module map ψ : M⊗AN → A
satisfying B = ψ ◦Bu. In what follows, assume that such a pair (M⊗AN, Bu) exists,
and fix one such pair for definiteness.

3. Show that (M⊗AN, Bu) is unique up to unique isomorphism, i.e. if (M ∗N,B∗)
is another pair, with B∗ : M × N → M ∗ N a bilinear map of A-modules en-
joying the universal property that (M ⊗A N, Bu) does, then there is a unique
isomorphism of A-modules ϕ : M ⊗A N −→∼ M ∗N such that ϕ◦Bu = B∗.

Solution: The universal property of (M⊗AN, Bu) give us a unique map ϕ : M⊗A
N −→∼ M ∗ N such that ϕ◦Bu = B∗. By symmetry, the universal property of
M ∗N, B∗) gives us unique map ψ : M ∗N →M⊗AB such that ψ ◦B∗ = Bu. Thus
(ψ ◦ϕ)◦Bu = Bu and (ϕ◦ψ)◦B∗ = B∗. However, the by the universal property of
(M⊗AN,Bu) and M ∗N, B∗), the equations x◦Bu = Bu y ◦B

∗ = B∗ admit exactly
one solution each, namely x = 1M⊗AN and y = 1M∗N . Thus ψ ◦ϕ and ϕ◦ψ are
both identity maps. �
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4. Write m ⊗ n for Bu(m, n) ∈ M ⊗A N . Show that M ⊗A N is generated as
an A-module by elements of the form m ⊗ n. You are expected to use the
universal property of tensor products and not any construction you might have
seen. [Hint: Let U be the submodule of M ⊗A N generated by the m⊗ n. See
if you can prove that U has the required universal property.]

Solution: Clearly U ⊃ Bu(M × N). Let B′ : M × N → U be the map induced
by Bu, i.e. B′(m, n) = Bu(m, n) for (m, n) ∈ M × N . It is quite evident that
(U, B′) has the required universal property of tensor products.3 If the incliusion
B ⊂ M ⊗A N is denoted by i : U → M ⊗A N , then i◦B′ = Bu. By the universal
property of Bu, we also have a map ϕ : M ⊗A N → U usch that ϕ◦Bu = B′. By a
now familiar argument, i◦ϕ is the identity on M ⊗A N and ϕ◦i is the identity on
U . This means the inclusion i : U ↪→M ⊗AN is an isomorphism, i.e. U is equal to
M ⊗A N . �

5. Show using the universal property of tensor products and the universal property
of localizations that if S is a multiplicative system in a ring A, and M ∈ ModA,
then S−1M = S−1A⊗AM . [Hint: Define a bilinear map S−1A×M → S−1M
and show that it has the universal property for tensor products. To do that, you
may need to verify that that if one has a bilinear map M ×N → T then on the
submodule of T generated by image of M ×N , µs is an isomorphism for every
s ∈ S.]

Solution: Let m ∈ M and suppose a/s and a′/s′ are two representations of an

element x ∈ S−1A. We claim that am
s = a′m

s′ . The equality a/s = a′/s′ gives
us an element t ∈ S such that ts′a = tsa′. This means ts′am = tsa′m, whence
(am)/s = (a′m)/s′ as asserted. This means that the map B∗ : S−1A×M → S−1M
given by the formula

B∗
(a
s
, m
)

=
am

s
is well-defined. It is easy to see that B∗ is bilnear over A.

Next suppose B : M × N → T is a bilnear map over A. Define ϕ : S−1M → T
by the rule ϕ(m/s) = B(1/s, m). We have to show (among other things) that ϕ is
well-defined. To that end, suppose m/s = m′/s′. We have an element t ∈ S such
that ts′m = tsm′. By the A-bilinearity of B, we get

B
(1

s
, m
)

= B
( ts′
ts′s

, m
)

= B
( 1

ts′s
, ts′m

)
= B

( 1

ts′s
, tsm′

)
= B

( ts

ts′s
, m′

)
= B

( 1

s′
, m′

)
.

This proves ϕ is well-defined. Moreover, for m,m′ ∈ M , s, s′ ∈ S, and a ∈ A,

we have ϕ(ms + am
′

s′ ) = ϕ( s
′m+sam′

ss′ ) = B( 1
ss′ , s

′m + sam′) = B( 1
ss′ , s

′m) +

aB( 1
ss′ , sm

′) = B( 1
s , m) + aB( 1

s′ , m
′) = ϕ(ms ) + aϕ(m

′

s′ ). In other words, ϕ is
A-linear. Now ϕ(B∗(a/s,m)) = ϕ((am)/s) = B(1/s, am) = B(a/s, m). Thus
ϕ◦B∗ = B.

3Of course, you are expected to provide more details
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It remains to show that ϕ is the unique map with the above property, i.e. we
have to show that if ψ : S−1M → T is an A-map such that ψ ◦ψ = B, then ψ = ϕ.
Let ψ be such a map. Then ψ(m/s) = ψ(B∗(1/s, m) = B(1/s, m) = ϕ(m/s). �

Localization and direct limits. Certain localizations can be regarded as direct
limits.

6. Let A be a ring, f an element of A, and T an A-module. Define a direct system
T = (Tn, µm,n), where the indices vary over non-negative integers (with its
natural structure as a directed set), by Tn = T for all n ≥ 0; and for m ≤ n,
µm,n : Tm → Tn is the map x 7→ fn−mx. Show that lim−−→n

Tn = Tf , where Tf is

the localization of T at the multiplicative system {fn | n ≥ 0}.

Solution: Let µn : Tn → Tf be the map x 7→ x/fn. It is clear that µn ◦µm,n = µm
for 0 ≤ m ≤ n. Next suppose Y ∈ ModA and we have a family of A-maps, νn : Tn →
Y , one for each n ≥ 0, such that νn ◦µm,n = νm for 0 ≤ m ≤ n. If ψ : Tf → Y is an
A-map such that νn = ψ ◦µn for every n ≥ 0, then ψ(x/fn) = ψ(µn(x)) = νn(x),
which means there is at most one ψ such that the relation νn = ψ ◦µn holds for
every n ≥ 0.

We will now show that for Y and {νn}n as above, such a map ψ exists. This
is equivalent to showing that x/fn 7→ νn(x) is a well defined A-map on Tf . To
that end, suppose x/fn = x′/fm, and for definiteness, assume m ≤ n. There exists
d ≥ 0 such that fd(fmx − fnx′) = 0. In other words, we have fm+dx = fn+dx′.
Regard x as an element of Tn and x′ as an element of Tm. We have just proven
that µn,m+n+d(x) = µm,m+n+d(x

′). It follows that

νn(x) = νm+n+d(µn,m+n+d(x)) = νm+n+d(µm,m+n+d(x
′)) = νm(x′).

Thus the map x/fn 7→ νn(x) is a well-defined map on Tf taking values in Y .
Let ψ : Tf → Y denote this map. It is clear that ψ ◦µn = νn for every n ≥ 0.
Next we will show that ψ is an A-map. This is seen from the following compu-

tation for x, x′ ∈ T , n,m ≥ 0, and a ∈ A:

ψ

(
x

fn
+ a

x′

fm

)
= ψ

(
fmx+ afnx′

fm+n

)
= νm+n(fmx+ afnx′)

= νm+n(fmx) + aνm+n(fnx′)

= ψ

(
fmx

fm+n

)
+ aψ

(
fnx′

fm+n

)

= ψ

(
x

fn

)
+ aψ

(
x′

fm

)
.

It follows that (Tf , µn) has the universal property required of a direct limit. �
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