

HW-2 SOLUTIONS

Throughout, if A is a ring¹ then Mod_A denotes the category of A -modules. If $M, N \in \text{Mod}_A$, we will often use the phrase “ $f: M \rightarrow N$ is an A -map” as a shorthand for “ $f: M \rightarrow N$ is a homomorphism of A -modules”.

For an element $a \in A$ and an A -module M , $\mu_a: M \rightarrow M$ will denote the A -map $x \mapsto ax$. The map μ_a is often called the “multiplication by a ” map.

Direct Limits. Let Λ be a partially ordered set, with partial order \prec . We say Λ is a *directed set* if given α and β in Λ , there exists $\gamma \in \Lambda$ such that $\alpha \prec \gamma$ and $\beta \prec \gamma$. Now let A be a ring and (Λ, \prec) a directed set. A *direct system over the directed set Λ* of A -modules is a collection of A -modules $\{M_\alpha \mid \alpha \in \Lambda\}$ together with A -maps $\mu_{\alpha\beta}: M_\alpha \rightarrow M_\beta$, one for every pair of indices (α, β) such that $\alpha \prec \beta$ satisfying the following relations:

- (i) $\mu_{\alpha\alpha} = id_{M_\alpha}$, $\alpha \in \Lambda$;
- (ii) $\mu_{\alpha\gamma} = \mu_{\beta\gamma} \circ \mu_{\alpha\beta}$ whenever $\alpha \prec \beta \prec \gamma$.

One often writes (M_α) or $(M_\alpha)_{\alpha \in \Lambda}$ for the collection $\{M_\alpha \mid \alpha \in \Lambda\}$ as well as for the direct system $\mathbf{M} = (M_\alpha, \mu_{\alpha\beta})$, suppressing the $\mu_{\alpha\beta}$. Now suppose $\mathbf{M} = (M_\alpha)$ is a direct system over Λ . The² *direct limit* of \mathbf{M} is an A -module \widetilde{M} together with a collection of A -maps $\mu_\alpha: M_\alpha \rightarrow \widetilde{M}$, one for each $\alpha \in \Lambda$, such that $\mu_\alpha = \mu_\beta \circ \mu_{\alpha\beta}$ for every $\alpha \prec \beta$; this data satisfying the following condition: If $T \in \text{Mod}_A$, and one has A -maps $\nu_\alpha: M_\alpha \rightarrow T$, $\alpha \in \Lambda$ satisfying $\nu_\alpha = \nu_\beta \circ \mu_{\alpha\beta}$ whenever $\alpha \prec \beta$, then there exists a unique A -map $\nu: \widetilde{M} \rightarrow T$ such that $\nu_\alpha = \nu \circ \mu_\alpha$ for every $\alpha \in \Lambda$. (We will soon change notation, and use the symbol $\varinjlim_\alpha M_\alpha$ for the direct limit.)

In what follows assume that a direct limit always exists for a direct system, and for definiteness, fix one for each direct system.

1. Show that $(\widetilde{M}, \mu_\alpha)_\alpha$ is unique up to unique isomorphism. In other words, show that if $(M^*, \mu_\alpha^*)_\alpha$ is another pair enjoying the same universal property that $(\widetilde{M}, \mu_\alpha)_\alpha$ does, then there is a unique isomorphism $\varphi: \widetilde{M} \xrightarrow{\sim} M^*$ such that $\mu_\alpha^* = \varphi \circ \mu_\alpha$.

Solution: The universal property of $(\widetilde{M}, \mu_\alpha)$ gives us a unique A -map $\varphi: \widetilde{M} \rightarrow M^*$ such that the following diagram commutes for every α :

$$\begin{array}{ccc}
 M_\alpha & & \\
 \downarrow \mu_\alpha & \searrow \mu_\alpha^* & \\
 \widetilde{M} & \xrightarrow{\varphi} & M^*
 \end{array}$$

¹According to our conventions, commutative and with identity.

²The definite article “the” will be justified in the problems below.

Similarly, the universal property for (M^*, μ_α^*) gives us a unique A -map $\psi: M^* \rightarrow \widetilde{M}$ such that the following diagram commutes for each α :

$$\begin{array}{ccc} & M_\alpha & \\ \mu_\alpha^* \swarrow & \downarrow \mu_\alpha & \\ M^* & \xrightarrow{\psi} & \widetilde{M} \end{array}$$

Combining the two we have commutative diagrams, one for each α :

$$\begin{array}{ccccc} & & M_\alpha & & \\ & \mu_\alpha^* \swarrow & \downarrow \mu_\alpha & \searrow \mu_\alpha^* & \\ M^* & \xrightarrow{\psi} & \widetilde{M} & \xrightarrow{\varphi} & M^* \end{array}$$

Thus $(\varphi \circ \psi) \circ \mu_\alpha^* = \mu_\alpha^*$ for every α . On the other hand $\mathbf{1}_{M^*} \circ \mu_\alpha^* = \mu_\alpha^*$ for every α . By the universal property of (M^*, μ_α^*) there is exactly one solution for u in the system of equations $u \circ \mu_\alpha^* = \mu_\alpha^*$, $\alpha \in \Lambda$, and hence $\varphi \circ \psi = \mathbf{1}_{M^*}$.

By symmetry $\psi \circ \varphi = \mathbf{1}_{\widetilde{M}}$. □

Since “the” direct limit is unique up to unique isomorphism, we will regard it as unique, and write

$$\varinjlim_{\alpha} M_\alpha$$

for the above direct limit. As with so much of mathematics (think groups), we will write $\varinjlim_{\alpha} M_\alpha$ for the module \widetilde{M} as well as the data $(\widetilde{M}, \mu_\alpha)_{\alpha}$.

For Problem 2 below, let $(M_\alpha)_{\alpha \in \Lambda}$ be a direct system of A -modules. Let $\coprod_{\alpha \in \Lambda} M_\alpha$ be the disjoint union of the M_α , i.e. $\coprod_{\alpha \in \Lambda} M_\alpha = \bigcup_{\alpha \in \Lambda} \{\alpha\} \times M_\alpha$. For $(\alpha, m_\alpha), (\beta, m_\beta)$ in $\coprod_{\alpha} M_\alpha$, write $(\alpha, m_\alpha) \sim (\beta, m_\beta)$ if there exists a $\gamma \succ \alpha, \beta$ such that $\mu_{\alpha\gamma}(m_\alpha) = \mu_{\beta\gamma}(m_\beta)$. It is easy to see that \sim is an equivalence relation on $\coprod_{\alpha} M_\alpha$. Assume this in what follows (and prove it for yourself, but don’t show me the work). Let $[\alpha, m_\alpha]$ denote the equivalence class of (α, m_α) . One can define an A -module structure on $M = (\coprod_{\alpha} M_\alpha)/\sim$ by setting

$$[\alpha, m_\alpha] + [\beta, m_\beta] := [\gamma, \mu_{\alpha\gamma}(m_\alpha) + \mu_{\beta\gamma}(m_\beta)]$$

for any $\gamma \succ \alpha, \beta$, and by setting

$$a[\alpha, m_\alpha] := [\alpha, am_\alpha]$$

for $a \in A$. It is easy to see (and again – you don’t have to show this to me, but do work it out for yourself) that the addition and scalar multiplication on M given above is well-defined and defines an A -module structure on M . You may use all these easily proven facts in what follows.

2. For $\alpha \in \Lambda$, let $\nu_\alpha: M_\alpha \rightarrow M$ be the map $m_\alpha \mapsto [\alpha, m_\alpha]$.

- (a) Show that each ν_α is an A -map.
- (b) Show that for $\alpha \prec \beta$, $\nu_\alpha = \nu_\beta \circ \mu_{\alpha\beta}$.
- (c) Show that if $\nu_\alpha(x) = 0$ for some $x \in M_\alpha$, then for some $\beta \succ \alpha$, $\mu_{\alpha\beta}(x) = 0$.
- (d) Show that the unique map $\nu: \varinjlim_{\alpha} M_\alpha \rightarrow M$, arising from the universal property of direct limits, is an isomorphism.

Solution: Parts (a), (b) and (c) are straightforward, so I will concentrate on (d).

Suppose $[\alpha, m_\alpha] = [\beta, m_\beta]$. Then there exists $\gamma \succ \alpha, \beta$ such that $\mu_{\alpha\gamma}(m_\alpha) = \mu_{\beta\gamma}(m_\beta)$. Denote the common element in M_γ defined by this equality by m_γ . Now $\mu_\alpha(m_\alpha) = \mu_\gamma(\mu_{\alpha\gamma}(m_\alpha)) = \mu_\gamma(m_\gamma)$. The same reasoning shows that $\mu_\beta(m_\beta) = \mu_\gamma(m_\gamma)$. In particular $\mu_\alpha(m_\alpha) = \mu_\beta(m_\beta)$. We have thus proved that the map

$$\theta: M \rightarrow \widetilde{M}$$

given by

$$\theta([\alpha, m_\alpha]) = \mu_\alpha(m_\alpha),$$

is well-defined. It is easy to see this is an A -map (though you are expected to spell this out in greater detail than I have). Now for $m_\alpha \in M_\alpha$, we have $\theta(\nu_\alpha(m_\alpha)) = \theta([\alpha, m_\alpha]) = \mu_\alpha(m_\alpha)$, whence $\theta \circ \nu_\alpha = \mu_\alpha$ for every index α . This means that for $\alpha \in \Lambda$, we have $(\theta \circ \nu) \circ \mu_\alpha = \theta \circ (\nu \circ \mu_\alpha) = \theta \circ \nu_\alpha = \mu_\alpha$. Thus $u = \theta \circ \nu$ is a solution to the system of equations $u \circ \mu_\alpha = \mu_\alpha$, $\alpha \in \Lambda$. By the universal property of direct limits, there is only solution to this system, namely $u = \mathbf{1}_{\varinjlim_\alpha M_\alpha}$. It follows that $\theta \circ \nu$ is the identity map on $\varinjlim_\alpha M_\alpha$.

On the other hand, for $[\alpha, m_\alpha] \in M$, we have

$$\begin{aligned} \nu(\theta([\alpha, m_\alpha])) &= \nu(\mu_\alpha(m_\alpha)) = (\nu \circ \mu_\alpha)(m_\alpha) \\ &= \nu_\alpha(m_\alpha) \\ &= [\alpha, m_\alpha]. \end{aligned}$$

Thus $\nu \circ \theta = \mathbf{1}_M$. □

Tensor products. Let A be a ring and $M, N, T \in \text{Mod}_A$. A *bilinear map of A -modules* from $M \times N$ to T is a map $B: M \times N \rightarrow T$ such that for every $m, m' \in M$, $n, n' \in N$ and $a \in A$ we have

- (i) $B(m + m', n) = B(m, n) + B(m', n)$;
- (ii) $B(m, n + n') = B(m, n) + B(m, n')$;
- (iii) $B(am, n) = B(m, an) = aB(m, n)$.

The *tensor product of M and N over A* is an A -module $M \otimes_A N$ together with a bilinear map of A -modules $B_u: M \times N \rightarrow M \otimes_A N$ such that given a bilinear map of A -modules $B: M \times N \rightarrow T$, there exists a unique A -module map $\psi: M \otimes_A N \rightarrow T$ satisfying $B = \psi \circ B_u$. In what follows, assume that such a pair $(M \otimes_A N, B_u)$ exists, and fix one such pair for definiteness.

3. Show that $(M \otimes_A N, B_u)$ is unique up to unique isomorphism, i.e. if $(M * N, B^*)$ is another pair, with $B^*: M \times N \rightarrow M * N$ a bilinear map of A -modules enjoying the universal property that $(M \otimes_A N, B_u)$ does, then there is a unique isomorphism of A -modules $\varphi: M \otimes_A N \xrightarrow{\sim} M * N$ such that $\varphi \circ B_u = B^*$.

Solution: The universal property of $(M \otimes_A N, B_u)$ give us a unique map $\varphi: M \otimes_A N \xrightarrow{\sim} M * N$ such that $\varphi \circ B_u = B^*$. By symmetry, the universal property of $(M * N, B^*)$ gives us unique map $\psi: M * N \rightarrow M \otimes_A N$ such that $\psi \circ B^* = B_u$. Thus $(\psi \circ \varphi) \circ B_u = B_u$ and $(\varphi \circ \psi) \circ B^* = B^*$. However, the by the universal property of $(M \otimes_A N, B_u)$ and $(M * N, B^*)$, the equations $x \circ B_u = B_u$ $y \circ B^* = B^*$ admit exactly one solution each, namely $x = \mathbf{1}_{M \otimes_A N}$ and $y = \mathbf{1}_{M * N}$. Thus $\psi \circ \varphi$ and $\varphi \circ \psi$ are both identity maps. □

4. Write $m \otimes n$ for $B_u(m, n) \in M \otimes_A N$. Show that $M \otimes_A N$ is generated as an A -module by elements of the form $m \otimes n$. You are expected to use the universal property of tensor products and not any construction you might have seen. [Hint: Let U be the submodule of $M \otimes_A N$ generated by the $m \otimes n$. See if you can prove that U has the required universal property.]

Solution: Clearly $U \supset B_u(M \times N)$. Let $B': M \times N \rightarrow U$ be the map induced by B_u , i.e. $B'(m, n) = B_u(m, n)$ for $(m, n) \in M \times N$. It is quite evident that (U, B') has the required universal property of tensor products.³ If the inclusion $B \subset M \otimes_A N$ is denoted by $i: U \rightarrow M \otimes_A N$, then $i \circ B' = B_u$. By the universal property of B_u , we also have a map $\varphi: M \otimes_A N \rightarrow U$ such that $\varphi \circ B_u = B'$. By a now familiar argument, $i \circ \varphi$ is the identity on $M \otimes_A N$ and $\varphi \circ i$ is the identity on U . This means the inclusion $i: U \hookrightarrow M \otimes_A N$ is an isomorphism, i.e. U is equal to $M \otimes_A N$. \square

5. Show using the universal property of tensor products and the universal property of localizations that if S is a multiplicative system in a ring A , and $M \in \text{Mod}_A$, then $S^{-1}M = S^{-1}A \otimes_A M$. [Hint: Define a bilinear map $S^{-1}A \times M \rightarrow S^{-1}M$ and show that it has the universal property for tensor products. To do that, you may need to verify that if one has a bilinear map $M \times N \rightarrow T$ then on the submodule of T generated by image of $M \times N$, μ_s is an isomorphism for every $s \in S$.]

Solution: Let $m \in M$ and suppose a/s and a'/s' are two representations of an element $x \in S^{-1}A$. We claim that $\frac{am}{s} = \frac{a'm}{s'}$. The equality $a/s = a'/s'$ gives us an element $t \in S$ such that $ts'a = tsa'$. This means $ts'am = tsa'm$, whence $(am)/s = (a'm)/s'$ as asserted. This means that the map $B^*: S^{-1}A \times M \rightarrow S^{-1}M$ given by the formula

$$B^*\left(\frac{a}{s}, m\right) = \frac{am}{s}$$

is well-defined. It is easy to see that B^* is bilinear over A .

Next suppose $B: M \times N \rightarrow T$ is a bilinear map over A . Define $\varphi: S^{-1}M \rightarrow T$ by the rule $\varphi(m/s) = B(1/s, m)$. We have to show (among other things) that φ is well-defined. To that end, suppose $m/s = m'/s'$. We have an element $t \in S$ such that $ts'm = tsm'$. By the A -bilinearity of B , we get

$$\begin{aligned} B\left(\frac{1}{s}, m\right) &= B\left(\frac{ts'}{ts's}, m\right) = B\left(\frac{1}{ts's}, ts'm\right) \\ &= B\left(\frac{1}{ts's}, tsm'\right) \\ &= B\left(\frac{ts}{ts's}, m'\right) \\ &= B\left(\frac{1}{s'}, m'\right). \end{aligned}$$

This proves φ is well-defined. Moreover, for $m, m' \in M$, $s, s' \in S$, and $a \in A$, we have $\varphi\left(\frac{m}{s} + a\frac{m'}{s'}\right) = \varphi\left(\frac{s'm + sam'}{ss'}\right) = B\left(\frac{1}{ss'}, s'm + sam'\right) = B\left(\frac{1}{ss'}, s'm\right) + aB\left(\frac{1}{ss'}, sm'\right) = B\left(\frac{1}{s}, m\right) + aB\left(\frac{1}{s'}, m'\right) = \varphi\left(\frac{m}{s}\right) + a\varphi\left(\frac{m'}{s'}\right)$. In other words, φ is A -linear. Now $\varphi(B^*(a/s, m)) = \varphi((am)/s) = B(1/s, am) = B(a/s, m)$. Thus $\varphi \circ B^* = B$.

³Of course, you are expected to provide more details

It remains to show that φ is the unique map with the above property, i.e. we have to show that if $\psi: S^{-1}M \rightarrow T$ is an A -map such that $\psi \circ \varphi = B$, then $\psi = \varphi$. Let ψ be such a map. Then $\psi(m/s) = \psi(B^*(1/s, m) = B(1/s, m) = \varphi(m/s)$. \square

Localization and direct limits. Certain localizations can be regarded as direct limits.

6. Let A be a ring, f an element of A , and T an A -module. Define a direct system $\mathbf{T} = (T_n, \mu_{m,n})$, where the indices vary over non-negative integers (with its natural structure as a directed set), by $T_n = T$ for all $n \geq 0$; and for $m \leq n$, $\mu_{m,n}: T_m \rightarrow T_n$ is the map $x \mapsto f^{n-m}x$. Show that $\varinjlim T_n = T_f$, where T_f is the localization of T at the multiplicative system $\{f^n \mid n \geq 0\}$.

Solution: Let $\mu_n: T_n \rightarrow T_f$ be the map $x \mapsto x/f^n$. It is clear that $\mu_n \circ \mu_{m,n} = \mu_m$ for $0 \leq m \leq n$. Next suppose $Y \in \text{Mod}_A$ and we have a family of A -maps, $\nu_n: T_n \rightarrow Y$, one for each $n \geq 0$, such that $\nu_n \circ \mu_{m,n} = \nu_m$ for $0 \leq m \leq n$. If $\psi: T_f \rightarrow Y$ is an A -map such that $\nu_n = \psi \circ \mu_n$ for every $n \geq 0$, then $\psi(x/f^n) = \psi(\mu_n(x)) = \nu_n(x)$, which means there is at most one ψ such that the relation $\nu_n = \psi \circ \mu_n$ holds for every $n \geq 0$.

We will now show that for Y and $\{\nu_n\}_n$ as above, such a map ψ exists. This is equivalent to showing that $x/f^n \mapsto \nu_n(x)$ is a well defined A -map on T_f . To that end, suppose $x/f^n = x'/f^m$, and for definiteness, assume $m \leq n$. There exists $d \geq 0$ such that $f^d(f^m x - f^n x') = 0$. In other words, we have $f^{m+d}x = f^{n+d}x'$. Regard x as an element of T_n and x' as an element of T_m . We have just proven that $\mu_{n,m+n+d}(x) = \mu_{m,m+n+d}(x')$. It follows that

$$\nu_n(x) = \nu_{m+n+d}(\mu_{n,m+n+d}(x)) = \nu_{m+n+d}(\mu_{m,m+n+d}(x')) = \nu_m(x').$$

Thus the map $x/f^n \mapsto \nu_n(x)$ is a well-defined map on T_f taking values in Y .

Let $\psi: T_f \rightarrow Y$ denote this map. It is clear that $\psi \circ \mu_n = \nu_n$ for every $n \geq 0$.

Next we will show that ψ is an A -map. This is seen from the following computation for $x, x' \in T$, $n, m \geq 0$, and $a \in A$:

$$\begin{aligned} \psi\left(\frac{x}{f^n} + a\frac{x'}{f^m}\right) &= \psi\left(\frac{f^m x + a f^n x'}{f^{m+n}}\right) = \nu_{m+n}(f^m x + a f^n x') \\ &= \nu_{m+n}(f^m x) + a \nu_{m+n}(f^n x') \\ &= \psi\left(\frac{f^m x}{f^{m+n}}\right) + a \psi\left(\frac{f^n x'}{f^{m+n}}\right) \\ &= \psi\left(\frac{x}{f^n}\right) + a \psi\left(\frac{x'}{f^m}\right). \end{aligned}$$

It follows that (T_f, μ_n) has the universal property required of a direct limit. \square