SOLUTIONS OF HOMEWORK 1

These are brief solutions. Occasionally there might be a detailed solution, espe-
cially if a subtle point needs clarification.

Localization as a functor. In what follows A is a ring, and S C A a multiplicative
system. If M € Mod,, we write

(#) ivg: M — ST'M
for the localization map m — m/1.
For an A-map f: M — N we define a map
S7lf: S7'M — STIN
by the rule m/s — f(m)/s.

1. Show the following:
(a) S71f is well-defined.
(b) If g: L — M is a second map, then S~*(fog) = (S71f)o (S 1g).
(c) If f is injective, so is SLf.
(d) If f is surjective, so is S™1f.

Solution: Parts (a) and (b) are straightforward.
(c) Suppose (S~1f)(m/s) = 0, with m € M and s € S. Then there exists an
element ¢ € S such that ¢f(m) =0, i.e. f(tm) = 0. Since f is injective, this means

tm = 0, which in turn means m/s = 0. (]
(d) Let z/s be an element of S™!(IV) with x € N and s € S. Since f is surjective,
there exists m € M such that f(m) = z whence (S™1f)(m/s) = x/s. O

2. Let L be an A-submodule of M. Regard S~!L as a submodule of S~'M via the
part (c) of Problem 1. Show that the map

S™HM/L) — (ST'M)/(S7'L)
given by mTJrL =t S~—1L, is an isomorphism. (In what follows, and for

the rest of the course, we will identify (without comment) S~!(M/L) with
(S7IM)/(S~'L) via the above isomorphism.)

Solution: Let us first verify that the given map is well-defined. Suppose, in an
obvious notation, (m+ L)/s = (m'+ L)/s’. This means there exists ¢t € S such that
t(s'm—sm’+L) = L. In other words ts'm—tsm’ € L. Let x = ts'm—tsm’, whence
z/(tss') = m/s—m'/s as elements of S~'M. Using the identification in part (c) of
Problem 1, this means that m/s—m'/s’ € S~'L,ie. m/s+S 'L =m'/s'+ S~ L.

The given map is clearly surjective from its definition. Now suppose the image
of (m+ L)/s=0,ie m/se€ S™L. Then m/s = x/t for some z € L and t € S. It
follows that there is ¢’ € S such that t'(tm — sx) = 0 in M. In particular t'tm € L.
Now (m+ L)/s = t't(m + L)/(t'ts) = (t'tm + L)/(t'ts) = 0 since t'tm + L is the
zero element of M/ L. O



3. Let ker (f), im(f) , and coker(f) denote the kernel, image, and cokernel of f
respectively. Show that
(a) S7lker(f) = ker (S71f), where we regard both sides as submodules of
STIM;
(b) S~tim(f) = im(S~1f);
(c) S~lcoker(f) = coker(S~1f).

Solution: (a) Let K = ker f and Kg = ker (S™1f). Let /s € S'K. It is clear that
(S71f)(x/s) = f(x)/s = 0. Thus S™'K C Kg. Conversely, suppose m/s € Kg.
Then f(m)/s = 0, whence there exists ¢t € S such that ¢tf(m) = 0. Thus tm € K,
whence m/s = (tm)/(ts) € ST'K. O
(b) We regard S~!im(f) and im(S~!f) as submodules of S™!N via our earlier
results. Let H = im(f) and Hs = im(S™'f). Let z/s € S™'H with = € H.
Since H is the image of f, we have © = f(m) for some m € M. Since x/s =
f(m)/s = (S71f)(m/s), we see that ST'H C Hg. For the converse, suppose
n/s € Hg C S™IN. Since Hg = im(S~'f) we have m/t € S~'M such that
f(m)/t = n/s. From this we deduce that there exists ¢ € S such that t'sf(m) =
t'tn, i.e. t'tn € H = im(f). Since n/s = (t'tn)/(t'ts) € S~ H, we are done. O
(¢) As above, let H be the image of f. Then this problem is really the problem of
showing that S™1(N/H) = (S~'N)/S~'H with all the identifications made earlier.
We are now reduced to Problem 2. 0

Localization of prime ideals. As before, A is a ring and S C A a multiplicative
system. Note that by part (c) of Problem 1, if I is an ideal of A then S~!I can be
regarded as an ideal of S~'A. In what follows, we will so regard it.

If f: A— B is a ring homomorphism, and I an ideal in A, then I B will denote
the ideal in B generated by the image of I in B. In other words, IB consists of
finite sums of the form )_ b, f(2), where the z, lie in I and the b, in B.

4. Let I be an ideal of A. Show that S~'I = S~!A if and only if SN T # ().

Solution: Note that S~/ =S 1A <= 1/1€ S7'] = (Jz €[ and s € S such
that 1/1 =1x/s) <= (3t € S, s € S and = € I such that st = tx). It is clear from
the above equivalences that if ™1 = S~!A, then SN1T # (), since st =tz € ANI.
Conversely, if s € SN 1, then pick ¢t = 1 and = s in the last statement in the
chain of equivalences above. O

5. Let p be a prime ideal of A such that S Np = 0. Show that S~'p is a prime
ideal of S™1A.

Solution: Let (a/s)(a’/s") € S~'p, say (a/s)(a'/s') = x/t with z € p and t € S.
Then there exists t* € S such that t*taa’ = t*ss’x. Since the right side of the last
equation lies in p, we get t*taa’ € p. Now t* and ¢ do not lie in p, and since p is

prime, we conclude that either a or @’ lies in p, whence at least one of a/s or a’/s’
lies in S~ 1p. U

6. Let P be a prime ideal of S~'A. Show that p:= i,'(B) is a prime ideal of
A disjoint from S, and S~!p = PB. Here, ig: A — S~1A is the canonical map
defined in (#). Conclude that there is a bijective correspondence between prime
ideals of S~'A and prime ideals of A disjoint from S.
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Solution: From the material done in class we know that p:= i,* () is a prime
ideal in A since the inverse image of any prime ideal under a ring homomorphism
is again a prime ideal. It remains to show that S~'p = 3. Suppose z/s € S~ 1p,
with z € p and s € S. By defintion of i4 and of p, we see that 2/1 € 3, whence
x/s = (1/s)(x/1) € P. Thus S~'p C P. Conversely, suppose a/s € PB. Then
a/1 = s(a/s) also lies in B, i.e. a € i,"P = p, proving that a/s € S~'p.

From Problem 5 and what we have established above, it is clear that p — S~ 'p
and B — 27‘1%3 establishes the required bijective correspondence, with each map
above being the inverse of the other. O

7. Let p and q be prime ideals of A with p D q. Let S = A\ p.
(a) Show that S~1q is a prime ideal in A, and that S~1q = qA,.
(b) Show that Q(A/p) = A,/pA,. Here Q(A/p) is the quotient field (i.e. the
field of fractions) of the integral domain A/p.
(c) Show that A, is a local ring with pA, its unique maximal ideal.

Solution: (a) Problem 5 shows that S™'q is a prime ideal of A,. We claim that
gA, = S7'q. Let 0 € qA,. Then 6 = Y7 | ¢;(a;/s;), where ¢; € q, a; € p, and

si€S=A~p. Let s =1][;s and t; = s151...5;-18i41...8,, for i =1,....n
(with an obvious interpretation when i equals either 1 or n). Then
0 — tigiai
s

It follows that # € S~'q. Conversely, if ¢/s € S™'q, then q/s = ¢q(1/s) € q4,. O

(b) It is simpler to prove a more general result, namely, if ¢: A — B is a ring map,
S a multiplicative system in A, T the multiplicative system ¢(S) in B, and M a
B-module, then S™'M = T~'M, where for the first localization, we regard M as
an A-module in the obvious way. The idea is to identify m/s with m/¢$(s). In
greater detail, let S™1M — T M be the map m/s — m/$(s). This is well-defined,
for, if m/s = 0, then there exists s’ € S such that s'm = 0, i.e. ¢(s')m = 0, whence
m/(1g) = 0, i.e. m/¢(s) = 0. The map is clearly surjective. Finally, note that if
m/¢(s) = 0 then there exists ¢ € T such that tm = 0. Now ¢t = ¢(s’) for some
s € 8, whence s'm = ¢(s')m = 0. If follows that m/(14) = 0, i.e. m/s = 0. The
isomorphism is canonical and functorial and hence we write S™'M = T~ M.

In our case, if we set B = A/p, ¢: A — B the natural map of A to its quo-
tient A/p, and M = A/p, then the above considerations show that S=1(A/p) =
(0(S))"1(A/p). Now ¢(S) is precisely the set of non-zero elements of the inte-
gral domain A/p. Thus S™1(A/p) = Q(A/p). On the other hand, by problem 2,
S=Y(A/p) = (S7TA)/(S'p) = A,/pA,, the last equality coming from part (a)
above. (]

(c) Since Ap/pA, is a field (in fact equal to Q(A/p)), pA, is a maximal ideal of A,.
Suppose J is an ideal of A, and let [ = i;l(J). If I contains an element of .S, say s,
then s/1 is a unit of A, in J, which means J = A,. Thus, if J is a proper ideal of
Ay, then I N SO. 1t is easy to see that S~'I = J by repeating the arguments given
for the solutions of many of the problems above. Thus I C p. Since localizations
preserve inclusions (see (c) of Problem 1), we see that J C S~'p = pA, (the last
equality is from part (a)). Thus pA, is the only maximal ideal of A,. d
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