
SOLUTIONS OF HOMEWORK 1

These are brief solutions. Occasionally there might be a detailed solution, espe-
cially if a subtle point needs clarification.

Localization as a functor. In what follows A is a ring, and S ⊂ A a multiplicative
system. If M ∈ ModA, we write

(#) iM : M → S−1M

for the localization map m 7→ m/1.
For an A-map f : M → N we define a map

S−1f : S−1M −→ S−1N

by the rule m/s 7→ f(m)/s.

1. Show the following:
(a) S−1f is well-defined.
(b) If g : L→M is a second map, then S−1(f ◦g) = (S−1f)◦(S−1g).
(c) If f is injective, so is S−1f .
(d) If f is surjective, so is S−1f .

Solution: Parts (a) and (b) are straightforward.
(c) Suppose (S−1f)(m/s) = 0, with m ∈ M and s ∈ S. Then there exists an
element t ∈ S such that tf(m) = 0, i.e. f(tm) = 0. Since f is injective, this means
tm = 0, which in turn means m/s = 0. �
(d) Let x/s be an element of S−1(N) with x ∈ N and s ∈ S. Since f is surjective,
there exists m ∈M such that f(m) = x whence (S−1f)(m/s) = x/s. �

2. Let L be an A-submodule of M . Regard S−1L as a submodule of S−1M via the
part (c) of Problem 1. Show that the map

S−1(M/L) −→ (S−1M)/(S−1L)

given by m+L
s 7→ m

s + S−1L, is an isomorphism. (In what follows, and for

the rest of the course, we will identify (without comment) S−1(M/L) with
(S−1M)/(S−1L) via the above isomorphism.)

Solution: Let us first verify that the given map is well-defined. Suppose, in an
obvious notation, (m+L)/s = (m′+L)/s′. This means there exists t ∈ S such that
t(s′m−sm′+L) = L. In other words ts′m−tsm′ ∈ L. Let x = ts′m−tsm′, whence
x/(tss′) = m/s−m′/s as elements of S−1M . Using the identification in part (c) of
Problem 1, this means that m/s−m′/s′ ∈ S−1L, i.e. m/s+S−1L = m′/s′+S−1L.

The given map is clearly surjective from its definition. Now suppose the image
of (m+ L)/s = 0, i.e. m/s ∈ S−1L. Then m/s = x/t for some x ∈ L and t ∈ S. It
follows that there is t′ ∈ S such that t′(tm− sx) = 0 in M . In particular t′tm ∈ L.
Now (m + L)/s = t′t(m + L)/(t′ts) = (t′tm + L)/(t′ts) = 0 since t′tm + L is the
zero element of M/L. �
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3. Let ker (f), im(f) , and coker(f) denote the kernel, image, and cokernel of f
respectively. Show that
(a) S−1 ker (f) = ker (S−1f), where we regard both sides as submodules of

S−1M ;
(b) S−1im(f) = im(S−1f);
(c) S−1coker(f) = coker(S−1f).

Solution: (a) Let K = ker f and KS = ker (S−1f). Let x/s ∈ S1K. It is clear that
(S−1f)(x/s) = f(x)/s = 0. Thus S−1K ⊂ KS . Conversely, suppose m/s ∈ KS .
Then f(m)/s = 0, whence there exists t ∈ S such that tf(m) = 0. Thus tm ∈ K,
whence m/s = (tm)/(ts) ∈ S−1K. �
(b) We regard S−1im(f) and im(S−1f) as submodules of S−1N via our earlier
results. Let H = im(f) and HS = im(S−1f). Let x/s ∈ S−1H with x ∈ H.
Since H is the image of f , we have x = f(m) for some m ∈ M . Since x/s =
f(m)/s = (S−1f)(m/s), we see that S−1H ⊂ HS . For the converse, suppose
n/s ∈ HS ⊂ S−1N . Since HS = im(S−1f) we have m/t ∈ S−1M such that
f(m)/t = n/s. From this we deduce that there exists t′ ∈ S such that t′sf(m) =
t′tn, i.e. t′tn ∈ H = im(f). Since n/s = (t′tn)/(t′ts) ∈ S−1H, we are done. �
(c) As above, let H be the image of f . Then this problem is really the problem of
showing that S−1(N/H) = (S−1N)/S−1H with all the identifications made earlier.
We are now reduced to Problem 2. �

Localization of prime ideals. As before, A is a ring and S ⊂ A a multiplicative
system. Note that by part (c) of Problem 1, if I is an ideal of A then S−1I can be
regarded as an ideal of S−1A. In what follows, we will so regard it.

If f : A→ B is a ring homomorphism, and I an ideal in A, then IB will denote
the ideal in B generated by the image of I in B. In other words, IB consists of
finite sums of the form

∑
α bαf(xα), where the xα lie in I and the bα in B.

4. Let I be an ideal of A. Show that S−1I = S−1A if and only if S ∩ I 6= ∅.

Solution: Note that S−1I = S−1A ⇐⇒ 1/1 ∈ S−1I ⇐⇒ (∃ x ∈ I and s ∈ S such
that 1/1 = x/s) ⇐⇒ (∃ t ∈ S, s ∈ S and x ∈ I such that st = tx). It is clear from
the above equivalences that if S−1I = S−1A, then S ∩ I 6= ∅, since st = tx ∈ A∩ I.
Conversely, if s ∈ S ∩ I, then pick t = 1 and x = s in the last statement in the
chain of equivalences above. �

5. Let p be a prime ideal of A such that S ∩ p = ∅. Show that S−1p is a prime
ideal of S−1A.

Solution: Let (a/s)(a′/s′) ∈ S−1p, say (a/s)(a′/s′) = x/t with x ∈ p and t ∈ S.
Then there exists t∗ ∈ S such that t∗taa′ = t∗ss′x. Since the right side of the last
equation lies in p, we get t∗taa′ ∈ p. Now t∗ and t do not lie in p, and since p is
prime, we conclude that either a or a′ lies in p, whence at least one of a/s or a′/s′

lies in S−1p. �

6. Let P be a prime ideal of S−1A. Show that p := i−1A (P) is a prime ideal of
A disjoint from S, and S−1p = P. Here, iA : A → S−1A is the canonical map
defined in (#). Conclude that there is a bijective correspondence between prime
ideals of S−1A and prime ideals of A disjoint from S.
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Solution: From the material done in class we know that p := i−1A (P) is a prime
ideal in A since the inverse image of any prime ideal under a ring homomorphism
is again a prime ideal. It remains to show that S−1p = P. Suppose x/s ∈ S−1p,
with x ∈ p and s ∈ S. By defintion of iA and of p, we see that x/1 ∈ P, whence
x/s = (1/s)(x/1) ∈ P. Thus S−1p ⊂ P. Conversely, suppose a/s ∈ P. Then
a/1 = s(a/s) also lies in P, i.e. a ∈ i−1A P = p, proving that a/s ∈ S−1p.

From Problem 5 and what we have established above, it is clear that p 7→ S−1p
and P 7→ i−1A P establishes the required bijective correspondence, with each map
above being the inverse of the other. �

7. Let p and q be prime ideals of A with p ⊃ q. Let S = Ar p.
(a) Show that S−1q is a prime ideal in Ap and that S−1q = qAp.
(b) Show that Q(A/p) = Ap/pAp. Here Q(A/p) is the quotient field (i.e. the

field of fractions) of the integral domain A/p.
(c) Show that Ap is a local ring with pAp its unique maximal ideal.

Solution: (a) Problem 5 shows that S−1q is a prime ideal of Ap. We claim that
qAp = S−1q. Let θ ∈ qAp. Then θ =

∑n
i=1 qi(ai/si), where qi ∈ q, ai ∈ p, and

si ∈ S = A r p. Let s =
∏
I si and ti = s1s1 . . . si−1si+1 . . . sn, for i = 1, . . . , n

(with an obvious interpretation when i equals either 1 or n). Then

θ =
tiqiai
s

.

It follows that θ ∈ S−1q. Conversely, if q/s ∈ S−1q, then q/s = q(1/s) ∈ qAp. �

(b) It is simpler to prove a more general result, namely, if φ : A→ B is a ring map,
S a multiplicative system in A, T the multiplicative system φ(S) in B, and M a
B-module, then S−1M = T−1M , where for the first localization, we regard M as
an A-module in the obvious way. The idea is to identify m/s with m/φ(s). In
greater detail, let S−1M → T 1M be the map m/s 7→ m/φ(s). This is well-defined,
for, if m/s = 0, then there exists s′ ∈ S such that s′m = 0, i.e. φ(s′)m = 0, whence
m/(1B) = 0, i.e. m/φ(s) = 0. The map is clearly surjective. Finally, note that if
m/φ(s) = 0 then there exists t ∈ T such that tm = 0. Now t = φ(s′) for some
s′ ∈ S, whence s′m = φ(s′)m = 0. If follows that m/(1A) = 0, i.e. m/s = 0. The
isomorphism is canonical and functorial and hence we write S−1M = T−1M .

In our case, if we set B = A/p, φ : A → B the natural map of A to its quo-
tient A/p, and M = A/p, then the above considerations show that S−1(A/p) =
(φ(S))−1(A/p). Now φ(S) is precisely the set of non-zero elements of the inte-
gral domain A/p. Thus S−1(A/p) = Q(A/p). On the other hand, by problem 2,
S−1(A/p) = (S−1A)/(S−1p) = Ap/pAp, the last equality coming from part (a)
above. �

(c) Since Ap/pAp is a field (in fact equal to Q(A/p)), pAp is a maximal ideal of Ap.

Suppose J is an ideal of Ap and let I = i−1A (J). If I contains an element of S, say s,
then s/1 is a unit of Ap in J , which means J = Ap. Thus, if J is a proper ideal of
Ap, then I ∩ S∅. It is easy to see that S−1I = J by repeating the arguments given
for the solutions of many of the problems above. Thus I ⊂ p. Since localizations
preserve inclusions (see (c) of Problem 1), we see that J ⊂ S−1p = pAp (the last
equality is from part (a)). Thus pAp is the only maximal ideal of Ap. �
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