

HW 1

Due date: Jan 28, 2022

Throughout, if A is a ring¹ then Mod_A denotes the category of A -modules. If $M, N \in \text{Mod}_A$, we will often use the phrase “ $f: M \rightarrow N$ is an A -map” as a shorthand for “ $f: M \rightarrow N$ is a homomorphism of A -modules”.

For an element $a \in A$ and an A -module M , $\mu_a: M \rightarrow M$ will denote the A -map $x \mapsto ax$. The map μ_a is often called the “multiplication by a ” map.

Localization as a functor. In what follows A is a ring, and $S \subset A$ a multiplicative system. If $M \in \text{Mod}_A$, we write

$$(\#) \quad i_M: M \rightarrow S^{-1}M$$

for the localization map $m \mapsto m/1$.

For an A -map $f: M \rightarrow N$ we define a map

$$S^{-1}f: S^{-1}M \longrightarrow S^{-1}N$$

by the rule $m/s \mapsto f(m)/s$.

1. Show the following:

- (a) $S^{-1}f$ is well-defined.
- (b) If $g: L \rightarrow M$ is a second map, then $S^{-1}(f \circ g) = (S^{-1}f) \circ (S^{-1}g)$.
- (c) If f is injective, so is $S^{-1}f$.
- (d) If f is surjective, so is $S^{-1}f$.

2. Let L be an A -submodule of M . Regard $S^{-1}L$ as a submodule of $S^{-1}M$ via the part (c) of Problem 1. Show that the map

$$S^{-1}(M/L) \longrightarrow (S^{-1}M)/(S^{-1}L)$$

given by $\frac{m+L}{s} \mapsto \frac{m}{s} + S^{-1}L$, is an isomorphism. (In what follows, and for the rest of the course, we will identify (without comment) $S^{-1}(M/L)$ with $(S^{-1}M)/(S^{-1}L)$ via the above isomorphism.)

3. Let $\ker(f)$, $\text{im}(f)$, and $\text{coker}(f)$ denote the kernel, image, and cokernel of f respectively. Show that

- (a) $S^{-1}\ker(f) = \ker(S^{-1}f)$, where we regard both sides as submodules of $S^{-1}M$;
- (b) $S^{-1}\text{im}(f) = \text{im}(S^{-1}f)$;
- (c) $S^{-1}\text{coker}(f) = \text{coker}(S^{-1}f)$.

¹According to our conventions, commutative and with identity.

Localization of prime ideals. As before, A is a ring and $S \subset A$ a multiplicative system. Note that by part (c) of Problem 1, if I is an ideal of A then $S^{-1}I$ can be regarded as an ideal of $S^{-1}A$. In what follows, we will so regard it.

If $f: A \rightarrow B$ is a ring homomorphism, and I an ideal in A , then IB will denote the ideal in B generated by the image of I in B . In other words, IB consists of finite sums of the form $\sum_{\alpha} b_{\alpha}f(x_{\alpha})$, where the x_{α} lie in I and the b_{α} in B .

4. Let I be an ideal of A . Show that $S^{-1}I = S^{-1}A$ if and only if $S \cap I \neq \emptyset$.
5. Let \mathfrak{p} be a prime ideal of A such that $S \cap \mathfrak{p} = \emptyset$. Show that $S^{-1}\mathfrak{p}$ is a prime ideal of $S^{-1}A$.
6. Let \mathfrak{P} be a prime ideal of $S^{-1}A$. Show that $\mathfrak{p} := i_A^{-1}(\mathfrak{P})$ is a prime ideal of A disjoint from S , and $S^{-1}\mathfrak{p} = \mathfrak{P}$. Here, $i_A: A \rightarrow S^{-1}A$ is the canonical map defined in (#). Conclude that there is a bijective correspondence between prime ideals of $S^{-1}A$ and prime ideals of A disjoint from S .
7. Let \mathfrak{p} and \mathfrak{q} be prime ideals of A with $\mathfrak{p} \supset \mathfrak{q}$. Let $S = A \setminus \mathfrak{p}$.
 - (a) Show that $S^{-1}\mathfrak{q}$ is a prime ideal in $A_{\mathfrak{p}}$ and that $S^{-1}\mathfrak{q} = \mathfrak{q}A_{\mathfrak{p}}$.
 - (b) Show that $Q(A/\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. Here $Q(A/\mathfrak{p})$ is the quotient field (i.e. the field of fractions) of the integral domain A/\mathfrak{p} .
 - (c) Show that $A_{\mathfrak{p}}$ is a local ring with $\mathfrak{p}A_{\mathfrak{p}}$ its unique maximal ideal.