Recall that a polynomial $p(z)$ with complex coefficients and with $\operatorname{deg} p>0$ can be written uniquely as

$$
p(z)=c\left(z-w_{1}\right)^{e_{1}}\left(z-w_{2}\right)^{e_{2}} \ldots\left(z-w_{m}\right)_{m}
$$

where C is a nou-zens constant, e_{1}, \ldots, e_{m} are positive integers, and $w_{1}, \ldots, w_{\mathrm{m}}$ are the distinct roots of $p(z)$.

Recall that a rational function $f(z)$ is one which is the ratio of two polynomials; $f=p / q$, where p and q are polynomials and q is not the polynomial which is identically zeno. Such a function can be witter as

$$
f(z)=c \frac{\left(z-w_{1}\right)^{e_{1}} \ldots\left(z-w_{m}\right) e_{m}}{\left(z-z_{1}\right)^{d_{1}} \ldots\left(z-z_{k}\right)^{e_{k}}} \quad(c \neq 0 \text { constant). }
$$

We may assume, after cancelling all common fentors, that the w_{j} are district (ie. of $i \neq j$, them $w_{i} \neq w_{j}$), the z_{i} are distinct, and no w_{j} equals any z_{i}.

If $f=p / q$ is sit. $\operatorname{deg} q<\operatorname{deg} p$, then by the Euclidean algorithm for dividing polynomials we, know that $p(z)=a(z) q(z)+h(z)$, with dy $h<d e g q$, where $a(z)$ is the "quotient" when p is divided by q and h is the remenirder. In this case

$$
f(z)=a(z)+\frac{\ln (z)}{q(z)}
$$

and the rational function h / q is s.t. $\operatorname{deg} q>\operatorname{deg} h$. lice we understand polynomials like $a(z)$, to sturdy rational functions we reed to undustand rational functions in which the polynomial in the denominator has a greater degree tran the polynomial in the numerator.

In view of the discussion in the previous page, let

$$
f(z)=c \frac{\left(z-w_{1}\right)^{e_{1}}\left(z-w_{2}\right)^{e_{2}} \ldots\left(z-w_{m}\right)^{e_{m}}}{\left(z-z_{1}\right)^{d_{1}}\left(z-z_{2}\right)^{d_{2}} \ldots\left(z-z_{k}\right)^{d_{k}}}
$$

with

- $d_{1}+\ldots+d_{k}>e_{1}+\ldots+c_{m}$
- w_{j} 's distinct; z_{i} 's distinct; no w_{j} equal to any z_{i}.
- c a non-zno constant.

Theovern: In the above sitivation there exist unique complex numbers A_{j} sui that

$$
\begin{aligned}
f(z)= & \frac{A_{10}}{\left(z-z_{1}\right)^{d_{1}}}+\frac{A_{11}}{\left(z-z_{1}\right)_{1}-1}+\cdots+\frac{A_{1, d_{1}-1}}{z-z_{1}} \\
& +\frac{A_{20}}{\left(z-z_{2}\right)^{d_{2}}}+\frac{A_{21}}{\left(z-z_{2}\right)^{d_{2}-1}}+\ldots+\frac{A_{2, d_{2-1}}}{z-z_{2}} \\
& \vdots \\
& +\frac{A_{k 0}}{\left(z-z_{k}\right)^{d_{k}}}+\frac{A_{k 1}}{\left(z-z_{k}\right)^{d_{k}-1}}+\cdots+\frac{A_{k, d_{k-1}}}{z-z_{k}}
\end{aligned}
$$

Remark: We will not be proving the above theovern. It is an algebraic statement, and not a couples analytic statement. However it is a very useful theorems and so we give an example of such a treak-up. The above decomposition of the rational function f is called the partial fraction decomposition of f.

Example: Find the partial fraction decomposition of

$$
f(z)=\frac{8^{2}-17 z+7}{(z-1)^{2}(z-2)}
$$

Solution: The form of the partial fraction decomposition of f is:

$$
\begin{equation*}
f(z)=\frac{a}{(z-1)^{2}}+\frac{b}{z-1}+\frac{c}{z-2} . \tag{*}
\end{equation*}
$$

We have to find a, b, and c. The usual techripure is to "clear denominator" and write $8 z^{2}-17 z+7$ as $a(z-2)+b(z-1)(z-2)+c(z-1)^{2}$, compare corfficionts, and solve for a, b, and c from the resulting equations. Here is a different technique.

Multiply bott sides of (x) by $(z-1)^{2}$. Get

$$
(z-1)^{2} f(z)=a+b(z-1)+\frac{c(z-1)^{2}}{z-2}
$$

Hence $\lim _{z \rightarrow 1}(z-1)^{2} f(z)=a$.
lo

$$
\begin{aligned}
a=\lim _{z \rightarrow 1}(z-1)^{2} f(z) & =\lim _{z \rightarrow 1} \frac{8 z^{2}-17 z+7}{z-2} \\
& =-2 /(-1)=2 .
\end{aligned}
$$

Thus $a=2$.

Next multiply both sides of (x) by $z-2$. Get

$$
(z-2) f(z)=\frac{a(z-2)}{(z-1)^{2}}+\frac{b(z-2)}{z-1}+c
$$

Hence $\lim _{z \rightarrow 2}(z-2) f(z)=c$. Thus

$$
\begin{aligned}
c=\lim _{z \rightarrow 2}(z-2) f(z) & =\lim _{z \rightarrow 2} \frac{8 z^{2}-17 z+7}{(z-1)^{2}} \\
& =\frac{8(4)-17(2)+7}{1^{2}}=5 .
\end{aligned}
$$

Thus $\quad c=5$

Finally note that

$$
\begin{aligned}
\frac{d}{d z}\left\{(z-1)^{2} f(z)\right\} & =\frac{d}{d z}\left\{a+b(z-1)+\frac{c(z-1)^{2}}{z-2}\right\} \\
& =b+\frac{(z-2)(2 c(z-1))-c(z-1)^{2}}{(z-2)^{2}}
\end{aligned}
$$

$\longrightarrow b$ as $z \rightarrow 1$.

Thun $\quad b=\lim _{z \rightarrow 1} \frac{d}{d z}\left\{(z-1)^{2} f(z)\right\}$

$$
\begin{aligned}
& =\lim _{z \rightarrow 1} \frac{d}{d z}\left\{\frac{8 z^{2}-17 z+7}{z-2}\right\} \\
& =\lim _{z \rightarrow 1}\left\{\frac{(z-2)(16 z-17)-\left(8 z^{2}-17 z+7\right)}{(z-2)^{2}}\right\} \\
& =\frac{(-1)(-1)-(-2)}{(-1)^{2}}=3 .
\end{aligned}
$$

Thus $b=3$.
In summary: $a=2, b=3, c=5$. In other woods

$$
\frac{8 z^{2}-17 z+7}{(z-1)^{2}(z-2)}=\frac{2}{(z-1)^{2}}+\frac{3}{z-1}+\frac{5}{z-2}
$$

is the required partial fraction decomposition.
Exponential and logarithms:
Recall that for $z=x+i y$, we defined

$$
e^{z}=e^{x}(\cos (y)+i \sin (y))
$$

In the real variable care, e^{x} is an increasing fruntion (see graph below) and hence $y=e^{x}$ define a one-to-rue fraction.

since $\exp (x)=e^{x}$ is a one-to-one function, it can be inverted and we have the inverse function too $(y)=\log (y)$.

In the complex case is $f(z)=e^{z}$ one-to-one? We answer that question in the next page.

Suppose $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ are two complex IT numbers such that

$$
e^{z_{1}}=e^{z_{2}}
$$

This means

$$
\underbrace{e^{x_{1}}\left(\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)\right)}_{\uparrow}=\underbrace{e^{x_{2}}\left(\cos \left(y_{2}\right)+i \sin \left(y_{2}\right)\right)}_{\hat{\imath}}
$$

Polar decomposition of $e^{z_{1}}$
Polar deroungantion of $e^{z_{2}}$.
$\beta \overbrace{}^{\hat{}} \ll$ since the " r " part of a polar decomposition is unique, this means

$$
e^{x_{1}}=e^{x_{2}}
$$

3 since e^{x} is one-t-one on \mathbb{R}, this means

$$
x_{1}=x_{2}
$$

Note $e^{x_{1}}=\left|z_{1}\right|$ and $e^{x_{2}}=\left|z_{2}\right|$.
so $x_{1}=\log \left|z_{1}\right|=\log \left|z_{2}\right|=x_{2}$.
The above polar decomposition also gives
ie.

$$
\cos \left(y_{1}\right)+i \sin \left(y_{1}\right)=\cos \left(y_{2}\right)+i \sin \left(y_{2}\right)
$$

$$
\cos \left(y_{1}\right)=\cos \left(y_{2}\right) \quad \text { and } \sin \left(y_{1}\right)=\sin \left(y_{2}\right) .
$$

This happens if and only if

$$
y_{1}=y_{2}+2 \pi n \text { for some integer } n \text {. }
$$

In particular if $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{1}+i\left(y_{1}+2 \pi\right)$, then $z_{1} \neq z_{2}$ but $e^{z_{1}}=e^{z_{2}}$.

Thus $f(z)=e^{z}$ is NOT one- \hbar-rue!

This creates problems for the definition of loganiturns.
Let us look at the problem in a slightly different way. Consider the equation (for $z \neq 0$)

$$
e^{w}=z
$$

where we are asked to solve for w (with z being given).

Write $w=a+i b$. Then

$$
z=e^{a} e^{i b}
$$

It follows that b is an argument $A z$. We write

$$
b=\arg (z)
$$

with the understanding that $\arg (z)$ is multivalued.
(We had earlier regarded arg (z) as a set, but we will use the symbol also for a member of the set.)

Moreover, $|z|=\left|e^{a}\right| \cdot\left|e^{i b}\right|=e^{a}$,
whence

$$
a=\log |z| .
$$

This gives the "formula"

Since $\arg (z)$ is multi-valued, so is $\log (z)$, ie. \log is NOT an honest function. For any $z \neq 0, \log (z)$ is really a set of values: $\log (z)=\{\log |z|+i \operatorname{Arg}(z)+2 \pi i n \mid n \in \mathbb{Z}\}$, where Arg (z) is the principal argument.

Recall that $\operatorname{Arg}(z)$ is the unique argument of z in the interval $(-\pi, \pi]$.

We also save that $\operatorname{Arg}(z)$ is not contimcons on $(-\infty, 0)$, ie. on the negative real axis.

We define the principal logarithom to be the function
\log on the domain $D=\mathbb{C},(-\infty, 0]$
Log: $D \longrightarrow \mathbb{C}$
given by the formula
The Primipipel

$$
\log \log (z)=\log |z|+i \widetilde{\operatorname{Arg}}(z)
$$

Snivel Arg is smigle-valued, so is Log.
Thus we have got oursches an honest logarithm, At a small price. We had to remove the negative real axis from ow r considerations. Log is only defined on

$$
D=\mathbb{C}-(-\infty, 0)
$$

The real reason this woos is the following observation: Though $f(z)=e^{z}$ is not one-to-one, it is ane-ti-one when restricted to the strip

$$
S=\{z \in \mathbb{C} \mid-\pi<\operatorname{Im}(z) \leqslant \pi\}
$$

e^{z} ove-t-memS.

The image of the open strip $\{z \mid-\pi<\operatorname{Im}(z)<\pi\}$ under the exponential map is D. Which is why $f(z)=e^{z}$ has an inverse (ie. a logarithm) on D.

We will show later (next lecture)

$$
\text { Log: } D \longrightarrow \mathbb{C}
$$

is amalytu on D and

$$
\frac{d}{d z} \log =\frac{1}{z}
$$

To prove aualigticity, we need the polar form of the Canchy-Riemam equators.

Let $f=u+i v$ on an open set G. The polar form of the Camry - Riemon equation are

$$
\text { Polar form of } c R \text { equations } \frac{\partial u}{\partial r}=\frac{1}{v} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

Were u and v are regarded a funtorns of r and θ via $u(r, \theta)=\operatorname{Re}\left(f\left(r e^{i \theta}\right)\right) \& \quad v(r, \theta)=\operatorname{Im}\left(f\left(r e^{i \theta}\right)\right)$.

Aralyticity f $\log (z)$ using the polar form of $C R$
we have

$$
\log (z)=\log \left(r e^{i \theta}\right)=\log r+i \theta
$$

where $r=|z|$ and $\theta=\operatorname{Arg}(z)$. It follows that if $\log =u+i v$, then

$$
u(r, \theta)=\log r \text { and } v(r, \theta)=\theta \text {. }
$$

Thus

$$
\begin{array}{ll}
\frac{\partial u}{\partial r}=\frac{1}{r} & \frac{\partial r}{\partial r}=0 \\
\frac{\partial u}{\partial \theta}=0 & \frac{\partial v}{\partial \theta}=1
\end{array}
$$

It is clear that \log satrs firs (titre polar form of) the Cauchy - Riemann equs \& hence is amalytu.

Next lecture

- Wite prove polar form of C-R
- will shone

$$
\frac{d}{d z} \log (z)=\frac{1}{z}
$$

- Will difcive $\cos (z), \sin (z)$
- Will define hyperbohi funchors $\cosh (z) \sinh (z)$.
- Perhaps stat on CONTOUR INTEGRATION.

