The Laplace equation:
Let u be a real-valuel function on an open set G of \mathbb{C} such that $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial y^{2}}$ exist on G. The Laplace equation for u sir G is:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Defintion: Let G be a domain in \mathbb{E}. A fronton $u: G \longrightarrow \mathbb{C}$ is said to be harmonic if all its sand pential denivaturn $\left(\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial x^{2} y}, \frac{\partial^{2} u}{\partial y^{2} x}, \frac{\partial^{2} u}{\partial y^{2}}\right)$ exist, are anturosns, and a satisfies the Laplace equation.
where do hewmonin funtrous occur?
Let f be amalythe on an open set G, sang $f=u+i r$, then one can show that all the 2 nd partials of u exist.

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right) \\
& =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial}{\partial y}\left(-\frac{\partial v}{\partial x}\right) \quad \text { (by Cancluy-Rieum) } \\
& =\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} v}{\partial y \partial x} \\
& =\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} v}{\partial x} \frac{\partial y}{\partial x}-\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right) \\
& \left.=\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial x^{2}} \text { (since } \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x} \text { by } C-R\right) \\
& \left.=\frac{\partial^{2} u}{\partial x^{2}}-1\right)
\end{aligned}
$$

$$
=0 .
$$

Conclusion: u is harmonic.
Sinee $g=-i f$ is analytir, and $v=\operatorname{Re}(g)$, thenfie r is also hamonic.

Thorem: Let $f=u+i v$ be anelytir on a domain G, then u and v are harmonis.

Defintion: Let u be homonic on an open set G. A hanomi puntion v on G is said to be congingate harmonis to u if $u+i r$ is analyter on G.
Suppore v_{1}, v_{2} are two harmonin funtions congingats. to u. Then

$$
f_{1}=u+i v_{1} \quad \text { and } \quad f_{2}=u+i v_{2}
$$

are bottr analyter on G. Assume G is a domain. Nov $f_{1}-f_{2}=i\left(v_{1}-v_{2}\right)$ is analylin on G and purely in inaginary-valuel. In the last lectine we showed that any analytro funtion which is purely imaginary valued is a conctant. So $\exists \quad \in \mathbb{R}$ surh that

$$
f_{1}(z)-f_{2}(z)=i c \quad \forall z \in G
$$

Herve

$$
i\left(v_{1}-v_{2}\right)=i c
$$

i.e.

$$
v_{1}-v_{2}=c .
$$

Conclusion: Two conjingates of a harmomi funtion u differ by a coubiant.

Examples:

1. Let $u(x, y)=e^{x} \cos y . \quad G=\mathbb{C}$.

$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{x} \cos y, \quad \frac{\partial^{2} u}{\partial y^{2}}=-e^{x} \cos y
$$

Hence $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ on \mathbb{A}
So u ia harmonic.
Let aa found a conjugate v for a.
know (form CR)

$$
\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y} \quad \text { AND } \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}
$$

So

$$
\frac{\partial v}{\partial x}=e^{x} \sin y \quad \text { AND } \quad \frac{\partial v}{\partial y}=e^{x} \cos y .
$$

Now $\frac{\partial r}{\partial x}=e^{x} \sin y$

$$
\Rightarrow \quad v(x, y)=\int e^{x} \sin y d x=e^{x} \sin y+\varphi(y)
$$

for some function φ.
Use this sir the equ $\frac{\partial v}{\partial y}=e^{x} \cos y$.
Get

$$
\begin{aligned}
& e^{x} \cos y+\varphi^{\prime}(y)=e^{x} \cos y \\
& \Rightarrow \quad \varphi^{\prime}(y)=0 \Rightarrow \varphi=\operatorname{con} t=c(\operatorname{sen} y) .
\end{aligned}
$$

Steve $\quad v(x, y)=e^{x} \sin i y+c$.
Note $u+i r=e^{x} \cos y+i e^{x} \sin y+i c$

$$
=e^{z}+i c
$$

2. Show that

$$
u(x, y)=x^{3}-3 x y^{2}
$$

is harmonic, and find a congigate v of u.
Sole:

$$
\frac{\partial^{2} u}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} u}{\partial y^{2}}=-6 x
$$

So $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, i.e. u is hanmomiu.

$$
\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}, \quad \frac{\partial u}{\partial y}=-6 x y .
$$

Tins means

$$
\frac{\partial v}{\partial y}=3 x^{2}-3 y^{2}, \quad \frac{\partial r}{\partial x}=6 x y .
$$

The first of these relations gives

$$
v=3 x^{2} y-y^{3}+\varphi(x)
$$

This gives

$$
\frac{\partial r}{\partial x}=6 x y+\varphi^{\prime}(x)
$$

Hence $6 x y=6 x y+\varphi^{\prime}(x)$.
In other wools $\varphi^{\prime}(x)=0$, ie. $\varphi(x)=c$.
there

$$
v(x, y)=3 x^{2} y-y^{3}+c .
$$

What is $f=u t i v$?
wite $z=x+i y$.

$$
\begin{aligned}
f(z) & =u(x, y)+i v(x, y) \\
& =x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)+i c . \\
& =x^{3}+3 x^{2}(i y)+3 x(i y)^{2}+(i y)^{3} .+i c \\
& =(x+i y)^{3}=z^{3}+i c .
\end{aligned}
$$

So $f(z)=z^{3}+i c, \quad c \in \mathbb{R}$.
an ont ff turn theorem (should have dove it lat dar):
Theorem: Lit f be andiytur on a domain G in C. if $f^{\prime}(z) \equiv 0$ on G, then $f(z)$ is a constant.
Pron]:
Write $z=x+i y, f=u+i r$.
We how $f^{\prime}(z)=\frac{\partial u}{\partial x}(x, y)+i \frac{\partial r}{\partial x}(x, y)$
This means (sine $f^{\prime} \equiv 0$) that

$$
\left.\begin{array}{rr}
\frac{\partial u}{\partial x} \equiv 0 & \text { and } \frac{\partial r}{\partial x} \equiv 0 \\
\frac{r}{x}=-\frac{\partial u}{\partial y} & \text { tare } \frac{\partial u}{\partial y} \equiv 0 .
\end{array}\right\} \text { on } G
$$

Thu $\quad \frac{\partial u}{\partial x}=\frac{\partial u}{\partial y} \equiv 0$. on a
Similarly $\quad \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y} \equiv 0$
Spice G is converted, this means u and v are contents, and hence f is a constant.

Polynomial and Rational functions Cagain)
Let p be a polynomial of deduce n, and $z_{0} \in C$.

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}
$$

Can write $p(z)$ in the following way:-

$$
p(z)=b_{0}+b_{1}\left(z-z_{0}\right)+b_{2}\left(z-z_{0}\right)^{2}+\ldots+b_{n}\left(z-z_{0}\right)^{n} .
$$

To see this, conte

$$
p(z)=p\left(\left(z-z_{0}\right)+z_{0}\right)
$$

and then use binomial the.
Another way.

$$
\begin{aligned}
& p(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n} \\
& p(z)=b_{0}+b_{1}\left(z-z_{0}\right)+\ldots+b_{n}\left(z-z_{0}\right)^{n} .
\end{aligned}
$$

Let us work out the $b_{i}{ }^{\prime \prime}$ s.
Hame

$$
p\left(z_{0}\right)=b_{0}
$$

Next,

$$
\text { So } p^{\prime}(z)=b_{1}+2 b_{2}\left(z-z_{0}\right)+\ldots+n b_{n}\left(z-z_{0}\right)^{n-1} \text {. }
$$

$$
\begin{gathered}
p^{\prime}\left(z_{0}\right)=b_{1} \\
p^{\prime \prime}\left(z_{0}\right)=2 b_{2} \\
\vdots \\
p^{(k)}\left(z_{0}\right)=k!b_{k} \\
\vdots \\
p^{(n)}\left(z_{0}\right)=n!b_{n}
\end{gathered} \Rightarrow\left(b_{k}=\frac{p^{k}\left(z_{0}\right)}{k!}\right.
$$

So can unto

$$
p(z)=b_{0}+b_{1}\left(z-z_{0}\right)+\ldots+\operatorname{An}\left(z-z_{0}\right) .
$$

and $d y p \geqslant 1$.
Suppose z_{0} is a root of $p(z)$, Then $p\left(z_{0}\right)=0$, lie. $b_{0}=0$, since $b_{0}=P\left(z_{0}\right)$. This means

$$
\begin{aligned}
p(z) & =b_{1}\left(z-z_{0}\right)+b_{2}\left(z-z_{0}\right)^{2}+\ldots+b_{n}\left(z-z_{0}\right)^{n} \\
& =\left(z-z_{0}\right) q(z), \quad q(z)=b_{1}+b_{2}\left(z-z_{0}\right)+\cdots+b_{1}\left(z-z_{0}\right)^{n-1}
\end{aligned}
$$

We have proved the following:
Proposition: Let $p(z)$ be a polynomial of dequee $n \geqslant 1$.
Then
(a) z_{0} is a root of $p(z)$ if and only if $p(z)=\left(z-z_{0}\right) q(z)$ where q is a poly nominal of
dequee $n-1$. dequee $n-1$.
(b) $p(z)$ has at most n roots.

Prof: Pact (a) follows from our calculations in the previous page. Pant (b) follows by applying (a) repeatedly.
Theorem (The Fundamental Theorem of Algebra) (Gauss): Let $p(z)$ be a polynomial with complex coiffocients of deque $\geqslant 1$. Then $p(z)$ has a root in \mathbb{C}.
Prof:: Omitted. Perhaps (?) later in the conte.
Corollary: Let $p(z)$ be a polynomial of deg ≥ 1, with complex coefficients. Then

$$
p(z)=c\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)
$$

where c is a non- jo constant and z_{1}, \ldots, z_{n} are the roots of p.
Prof: By the fund'l the, $p(z)=\left(z-z_{1}\right) g(z)$ where f is of dey $n-1$. Repent this process unit g 's de que drops ts zeno.

Next week: Supple $R(z)=\frac{p(z)}{q(z)}, \operatorname{deg} g(z)>\operatorname{beg} p(z)$. wite $q(z)=c\left(z-z_{1}\right)^{d_{1}} \cdots\left(z-z_{k}\right)^{d_{k}}, \quad d_{i} \geq 1$, $z_{1, \ldots}, z_{k}$ dislinat. Then

$$
\left.\begin{array}{rl}
R(z) & =\frac{A_{10}}{\left(z-z^{d_{1}}\right.}+\frac{A_{11}}{\left(z-z_{1}\right)^{d_{1}-1}}+\ldots+\frac{A_{1, d_{1}-1}}{\left(z-z_{1}\right)} \\
& +\frac{A_{20}}{\left(z-z_{2} d^{d_{2}}\right.}+\frac{A_{21}}{\left(z-z_{2}\right)^{d_{2}-1}}+\ldots+\frac{A_{2, d_{2}-1}}{\left(z-z_{2}\right)} \\
& + \\
& +\frac{A_{k 0}}{\left(z-z_{k}\right)^{d_{k}}}+\frac{A_{k 1}}{\left(z-z_{k}\right)^{d_{k-1}}}+\ldots+\frac{A_{k, d_{k}-1}}{\left(z-z_{k}\right)}
\end{array}\right\} \text { The partial } \begin{gathered}
\text { fration } \\
\text { deramporition } \\
\text { of }(z) .
\end{gathered}
$$

