Jet 3, 2022

The Laplace equation: hot u be a real-valued function on an open wit G of C such that $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial y^2}$ exist on G. The Laplace equation for u on G is : $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$ Depiration: Let G be a domain in G. A fruction are continous, and a satisfies the haplace equation. Where do harmonin frontion occur? Let f be analyte on an pen set G, say f=u+iv then one can show that all the 2rd partials of u exist. $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right)$ $= \frac{\partial^2 u}{\partial x^2} + \frac{\partial}{\partial y} \left(-\frac{\partial v}{\partial x} \right)$ (by cauchy-Riam) $=\frac{\partial^2 \alpha}{\partial x^2} - \frac{\partial^2 \nu}{\partial y \partial k}$ $= \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 v}{\partial x \partial y}$ $= \frac{\Im u}{\partial \chi^2} - \frac{\partial}{\partial \chi} \left(\frac{\partial v}{\partial y} \right)$ $= \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x^2} \quad (\text{suice } \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} \text{ by } CP)$

$$= 0.$$
Gonchumm: u is harmonic.
Line $g = -\alpha if$ is analytic, and $v = \text{Re}(q)$, therefore
 v is also harmonic.
Theorem: Let $f = u + iv$ be analytic on a homain G_i then
 u and v are harmonic.
Definition: Let u be homonic on an open set G_i . A
harmonic function v on G_i is said to be anyinget
hormonic function v on G_i is said to be anyinget
hormonic function v on G_i is said to be anyinget
hormonic function v on G_i is said to be anyinget
hormonic function v on G_i is said to be anyinget
hormonic function v on G_i is said to be anyinget
to u . Then
 $f_i = u + iv_i$ and $f_2 = u + iv_2$
are bolts analytic on G_i . Hence G is a domain.
Now $f_i - f_2 = e^i(v_i - v_2)$ is analytic u of d and
purely imaginary valued. In the last heltice u_i
there $i(v_i - v_2) = ic$
 $v_i - v_1 = C$.
Conclusion: Two conjugates f a harmonic function u
differ by a contrart.

Examples:
Let
$$u(x,y) = e^{x} \cos y$$
. $G = C$.
 $g^{2}u = e^{x} \cos y$, $g^{2}u = -e^{x} \cos y$.
Hence $g^{2}u + g^{2}u = 0$ on C
by u is howning.
Let us find a conjugate v for a .
Hence $(form Cl)$
 $g^{2}v = -gu$ And $g^{2}v = gu$
 $g^{2}v = -gu$ And $g^{2}v = g^{2}v$.
 $g^{2}v = e^{x} \sin y$
 $g^{2}v = e^{x} \cos y$.
Now $g^{2}v = e^{x} \sin y$
 $g^{2}v = e^{x} \sin y$
 $g^{2}v = e^{x} \cos y$.
 $g^{2}v = e^{x} \sin y + c$.
Note $u + iv = e^{x} \cos y + ie^{x} \sin y + ic$.
 $u = e^{x} + ie$.

2. Ihre that

$$u(x,y) = x^3 - 3xy^2$$

is harmonic, and ford a conjugate $v \in g$ a.
 $\frac{32u}{3x^2} = 6x$, $\frac{3^2u}{3y^2} = -6x$
 $\frac{3x^2}{3x^2} = 6x$, $\frac{3^2u}{3y^2} = -6x$
 $\frac{3x^2}{3x^2} + \frac{3^2u}{3y^2} = 0$, i.e. u is harmonic.
 $\frac{3u}{3x} = 3x^2 - 3y^2$, $\frac{3u}{3y} = -6xy$.
This means
 $\frac{3v}{3y} = 3x^2 - 3y^2$, $\frac{3v}{3z} = 6xy$.
The first of these relation gives
 $v = 3x^2y - y^3 + \rho(x)$.
This griss
 $\frac{3v}{3x} = 6xy + p'(x)$.
This griss
 $\frac{3v}{3x} = 6xy + p'(x)$.
Here
 $v(x,y) = 3x^2y - y^3 + c$.
Here
 $v(x,y) = 3x^2y - y^3 + c$.
Here
 $\frac{3u}{3x} = xx^5y$.
 $f(z) = u(x,y) + iv(x,y)$
 $= x^3 - 3xy^2 + i(3x^2y - y^3) + ic$.
 $= x^3 + 3x^2(xy) + 3x(iy)^2 + (iy)^3$. $+ic$
 $= (x + 5y)^3 = x^3$. $+ ic$.

b
$$f(z) = z^3 + ic$$
, $c \in \mathbb{R}$.
An ont of turn thronem calculate have done it left dows).
Theorem: Let f be analyter on a domain G in C.
 $2f - f'(z) = 0$ on G, then $f(z)$ is a constant.
Hol:
We have $f'(z) = \frac{\partial u}{\partial x} (x,y) + i \frac{\partial v}{\partial x} (x,y)$
This means (mice $f' = 0$) that
 $\frac{\partial u}{\partial x} = 0$ and $\frac{\partial v}{\partial x} = 0$
 $\frac{\partial u}{\partial x} = 0$ and $\frac{\partial v}{\partial x} = 0$.
But $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$. Here $\frac{\partial u}{\partial y} = 0$.
 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$, on G
But $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
finitianly $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$
Anice G is converted, this means u and v
are constrained, and hence f is a constant //
 $\frac{\partial u}{\partial y}$ and hence f is a constant //
 $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
Anice G is converted, this means u and v
are constrained and hence f is a constant //
 $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial y} = 0$.
 $\frac{\partial v}{\partial x} = 0$.
 $\frac{\partial v}{\partial y} = 0$.

To see this, whit

$$p(z) = p((z-z_0) + z_0)$$

and then the bitmin of them.
Another way.
 $p(z) = a_0 + a_1 z + ... + a_n z^n$
 $p(z) = b_0 + b_1(z-z_0) + ... + b_n (z-z_0)^n$.
Let us work the $b_n''s$.
How
 $p(z_0) = b_0$
Noat,
 $p'(z_0) = b_1 + 2b_2(z-z_0) + ... + nb_n (z-z_0)^{n-1}$.
 b_0
 $p'(z_0) = b_1$
 $p''(z_0) = zb_2$
 \vdots
 $p^{(h)}(z_0) = h! b_k$
 \vdots
 $p^{(h)}(z_0) = h! b_h$
 $p(z) = b_0 + b_1(z-z_0) + ... + h_n(z-z_0)$.
 $a_0 + b_1 + b_1(z-z_0) + ... + h_n(z-z_0)$.
 $a_0 + b_1 + b_1(z-z_0) + ... + h_n(z-z_0)$.
 $a_0 + b_1 + b_1(z-z_0) + ... + h_n(z-z_0)$.
 $a_0 + b_1 = p(z_0) + b_1 + b_1 + b_1(z-z_0)^n$
 $b_0 = 0$, since $b_0 = p(z_0)$. This means
 $p(z) = b_1 (z-z_0) + b_2 (z-z_0)^2 + ... + b_n(z-z_0)^n$
 $= (z-z_0) g(z) , g(z) = b_1 + b_2(z-z_0)^{n-1} + b_1(z-z_0)^n$

 $R(z) = \underbrace{A_{1D}}_{(z-z)} \xrightarrow{4} \underbrace{A_{u}}_{(z-z_{1})} \xrightarrow{4} \underbrace{A_{v}}_{(z-z_{1})}$ The partial fraction decomposition $\frac{+}{(z_{-}+z_{2})^{d_{2}}} + \frac{A_{2}}{(z_{-}+z_{2})^{d_{2}-1}} + \frac{A_{2}}{(z_{-}+z_{2})^{d_{2}-1}} + \frac{A_{2}}{(z_{-}+z_{2})}$ of P(2). + 0 $+ \frac{A_{k0}}{(z-z_{k})^{d_{k}}} + \frac{A_{k1}}{(z-z_{k})^{d_{k-1}}} + \frac{A_{k}}{(z-z_{k})} + \frac{A_{k}}{(z-z_{k})}$