Announce mont:
Y m do not have to subunit the following problem fer HW3:

$$
2 \cdot 2 \cdot 5,2 \cdot 3 \cdot 14,2 \cdot 3 \cdot 15,2 \cdot 3 \cdot 3
$$

Cawely-Riemann:
$f=u+i v ; \frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$ exist at $\left(x_{0}, y_{0}\right)$ in domain of
The CR-equatious at $\left(x_{0}, y_{0}\right)$ ane
and

$$
\begin{aligned}
& \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \\
& \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial v}{\partial x}\left(x_{0}, y_{1}\right)
\end{aligned}
$$

f may ar may not eatisly the above equations.
we have showon:

We will now show "expficien goy" but with ext re hypotheses on f.
Theorem: Let G be open in $\mathbb{C}, z_{0}=x_{0}+i y_{0}$ a point in G and $f: G \longrightarrow \mathbb{C}$ a fraction with $f=u+i v$ such that $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial r}{\partial y}$ exist oud ane continanons in a
$\left.\begin{array}{l}\text { NOTE } \\ \text { THE } \\ \text { EDIT }\end{array}\right\}$ neighbourhood of z_{0} and are continous at z_{0}

$$
\begin{aligned}
& \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \\
& \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

then f is diffoble at z_{0}.

Need the patrols to exist in a nola of z_{0} and be coutruous at z_{0}.

Prof:
Let $\Delta z=\Delta x+i \Delta y$. Then

$$
\begin{aligned}
\left(x_{0}+\Delta x,\right. & \left.y_{0}+\Delta y\right) \\
& =z_{0}+\Delta z
\end{aligned}
$$

$$
\begin{aligned}
u\left(x_{0}+\Delta x, y_{0}+\Delta y\right) & -u\left(x_{0}, y_{0}\right) \\
= & {\left[u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}+\Delta y\right)\right] } \\
& +\left[u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)\right]
\end{aligned}
$$

By the Mean Value Theorem from Calenhus the 1 st bracketed expression

$$
\begin{aligned}
& =\Delta x \frac{\partial u}{\partial x}\left(x^{*}, y_{0}+\Delta y\right) \text {, where } x^{*} \text { his between } \\
& x_{0} \text { and } x_{0}+\Delta x \\
& =\Delta x \frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+\varepsilon_{1} \quad \text { where } \varepsilon_{i} \rightarrow 0 \text { as } x^{*} \rightarrow x_{0} \\
& i x \rightarrow 0 \text { as } \Delta x \rightarrow
\end{aligned}
$$ since $\frac{\partial u}{\partial x}$ is conturnous at $\left(x_{0}, y_{0}\right)$ as $\Delta x \rightarrow 0,1 . e$. as $\Delta z \rightarrow 0$

The same reasoning shows that the $2^{\text {nd }}$ bracketed aspersion

$$
=\Delta y \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)+\varepsilon_{2}, \varepsilon_{2} \rightarrow 0 \text { as } \Delta z \rightarrow 0 \text {. }
$$

Similarly

$$
\left.\begin{array}{l}
v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}+\Delta y\right)=\Delta x \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)+\varepsilon_{3} \\
v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)=\Delta y \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)+\varepsilon_{4}
\end{array}\right\} \begin{aligned}
& \varepsilon_{3} \rightarrow 0 \\
& 4 \varepsilon_{4} \rightarrow 0 \\
& \text { as } \Delta z \rightarrow 0 .
\end{aligned}
$$

So $v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)=\Delta x \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)+\Delta y \frac{\partial v}{\partial y}\left(n_{0}, y_{0}\right)+\varepsilon_{3}+\varepsilon_{4}$

$$
\begin{aligned}
& f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)=\Delta x\left\{\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}+i \varepsilon_{3}\right\} \\
&+\Delta y\left\{\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial y}\left(x_{0}, y_{1}\right)+\varepsilon_{2}+i \varepsilon_{4}\right\} \\
&=(\Delta x+i \Delta y)\left(\frac{\partial u}{\partial x}\left(x_{1}, y_{0}\right)\right)+i(\Delta x+i \Delta y)\left(\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\right) \\
&+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y+i\left(\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right)
\end{aligned}
$$

$$
\begin{aligned}
=\Delta z\left(\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)\right) & +\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y \\
& +i\left(\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y\right)
\end{aligned}
$$

$$
\text { (x) }\left\{\begin{array}{r}
\begin{array}{r}
\text { therme } \\
\frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z}=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)
\end{array}+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) \\
+\frac{\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y}{\Delta z}+\frac{i\left(\varepsilon_{3} \Delta x+\varepsilon_{0} \Delta y\right)}{\Delta z .}
\end{array}\right.
$$

$D^{x / P y} \quad$ Note $\quad|\Delta x| \leqslant|\Delta z|, \quad|\Delta y| \leqslant|\Delta z|$.
So $\left|\frac{\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta_{y}}{\Delta_{2}}\right| \leqslant \frac{\varepsilon_{1}|\Delta x|+\varepsilon_{2}|\Delta y|}{|\Delta z|} \leqslant \varepsilon_{1}+\varepsilon_{2}$.
Sinneurly

$$
\left|\frac{\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y}{\Delta z}\right| \leqslant \varepsilon_{3}+\varepsilon_{4} .
$$

In other world

$$
\begin{aligned}
& \lim _{\Delta z \rightarrow 0} \frac{\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y}{\Delta z}=0 \\
& \lim _{\Delta z \rightarrow 0} \frac{\varepsilon_{3} \Delta x+\varepsilon_{4} \Delta y}{\Delta z}=0
\end{aligned}
$$

Now let $\Delta z \rightarrow 0$ in equation ($*$). Get

$$
\lim _{\Delta t \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right) .
$$

Since the li nt on the let exists, f is diff ble at z_{0}.

Reminder (The difference between analytieity and dífferentiabulty). We say f is analyser in an open set if it is diffible at every pt in that open set. We say f is analyser at a point so if f is diffible at energy point in a neighbrucured if z_{0}. do being diff'ble at a point ε_{0} does
not ensure being analyser at z_{0}.
Example from last time: $f(z)=|z|^{2}$ is diffible at 0 and nowhere else. Lo f is diffible at 0 but mot analytic at 0 .

Recall that last time we used the above thioven to prove that $f(z)=e^{z}$ is anolytur on \mathbb{C}. Indeed in this care, $u(x, y)=e^{x} \cos y, v(x, y)=e^{x} \sin y$. Cleanly u, v have partial derivatuis which are cts, and it is easy to check (as are did last lecture) that they satisfy the CR- equation at all points.

We kano: $\quad f^{\prime}(z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$.

$$
\begin{aligned}
& =e^{x} \cos y+i e^{x} \sin y \\
& =e^{z}
\end{aligned}
$$

Examples:

1. Suppose $f: G \longrightarrow \mathbb{C}$ is real-valued (G a domani in C) ant andytio. Then we clanin f is a constant.
d lave $f=u+i v$, with $v \equiv 0$. Heme $\frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}=0$. By $C R$ this means $\frac{\partial u}{\partial x} \equiv 0$ and $\frac{\partial w}{\partial y} \equiv 0$.
Fort from several variables caleurlus : if $g: D \rightarrow R$ is a function on a converted open set ${ }_{n}^{D}$ of \mathbb{R}^{2} such that $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y} \equiv 0$, then g is a constant.
2. Suppose G is a domain and $f \geqslant G \longrightarrow \mathbb{C}$ is analytic and is purely imaginary. Then f is a constant. Some pool as above.
3. Suppose G is a domaris and $f: G \longrightarrow \mathbb{C}$ is an analytic function sure that $|f|$ is constant. Then f is constant. Left as an exencric fer you.
tint: Use the font that $u^{2}+v^{2}=$ constant.

Harmonic Functions

Let G be an open set in i \mathbb{C} and $u: G \rightarrow \mathbb{R}$ a neal fraction such that $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial y^{2}}$ exist. Then u is said to be hormone $\overline{\partial x^{2}}$ on G. if

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

on G.
Exererie: Suppose $f=u t i v$ is analytur on G. Show that u and v are harmonic.

