<u>Recall</u>: Suppose f is a complex-valued function deponed in a neighbourhood of ZoEC. We say fis continous at 20 sy $\lim_{B \to 2a} f(z) = f(z_0).$ Limite and impirity: We say lim $f(z) = \infty$ if $\lim_{z \to z_0} |f(z)| = \infty$. ۱. According to real variable Calculus this means like follooing: Given a positive real number M > 0, there exists 5-0 such that |f(z)| > Mwhenever 0 < 12 - 201 < 5. • f (z) We also spoke about him f(z). 2. Recall we defined it as L= him f(to).

This means, grian
$$\varepsilon > 0$$
, $\exists \ \delta > 0$ such that
whenever $0 \le |w| < \delta$ we have
 $|f(t_s) - L| < \varepsilon$.
Let $P = \frac{1}{\delta}$. Note that the above is equivablent
to sorging that whenever $|\vartheta| > P$, we have
 $|f(\varepsilon) - L| < \varepsilon$.
This gives no an alternative definition of drive $f(\varepsilon)$.
Definition Calternative definition of drive $f(\varepsilon)$.
Definition Calternative definition of drive $f(\varepsilon)$.
Definition Calternative definition of δ be an unbounded $\varepsilon < t_j$
and f a function on δ . We say
drive $f(\varepsilon) = L$
 $2 \int \delta = 0$ there exists an $P > 0$ such
definitions $|t| < \varepsilon$.
Multiplicity: lecall that if f is defined in a
nobled of a coplex number ε_0 , we down f is different of
 $\delta = 0$ if $(\varepsilon_0 + \delta =) - f(\varepsilon_0)$
 $\delta = 0$ $\delta = 0$ $\delta = 0$ the above limit, bre
derivative of f at ε_0 , and denote the limit by the

symbols
$$f'(b)$$
 or $\frac{df}{dz}(b)$.
Example: Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function $f(z) = \overline{z}$.
(lecall: $z_{1} = z + z_{2}b$, then $\overline{z} := z - z_{2}b$.)
Then the difference quotient (for $bz \neq 0$)
 $\int (\overline{z} + bz) - \overline{f(z)} = (\overline{z} + b\overline{z}) - \overline{z}$
 bz
 bz
 $c_{1}(\overline{z} + bz) - \overline{f(z)} = \overline{z} + \overline{bz} - \overline{z}$
 bz
 $c_{2}(\overline{z} + bz) - \overline{z}$
 bz
 bz
 $c_{3}(\overline{z} + bz) - \overline{z}$
 bz
 bz
 $c_{4}(\overline{z} + bz) - \overline{z}$
 bz
 bz

Write
$$bz = bx + i by$$
, with bx , by real.
Let $bz \rightarrow 0$ along the real-axis. Then $by = 0$
and $bz = bx$. Now $bx = bx$, true bx is real,
and $bz = bz$. This means the computation in (4)
yields
 $\frac{1}{bz} = \frac{1}{bz} = \frac{1}{bz}$. (+)

Let
$$\Delta z \longrightarrow 0$$
 along the imaginary axis. Then
 $\Delta z = i \Delta y$. Now $(i \Delta y) = (0 - i \Delta y) = 0 - i \Delta y$
 $= -i \Delta y$.
So $\Delta z = -\Delta z$ in this case. This means
the computations in (x) yields:

$$\frac{f(s+02)-f(s)}{b2} = -(. \qquad (#)$$

$$\frac{f(s+02)-f(s)}{b2} = -(. \qquad (f(s)) = -(1)$$

$$\frac{f(s+02)-f(s)}{b2} = -(. \qquad (f(s)) = -(1)$$

$$\frac{f(s)}{b2} = -(. \qquad (f(s)) = -(1)$$

We know that P and g are diff ble at 20, then P/q is diff'ble at 20 (the theorem was stated in the last class) provided $g(z_0) \neq 0$. Suppose 3 = 0. Then $\overline{2} = \frac{f(z)}{2}$. The function 2 is diffile everywhere. If I was diffile at 2 (240), then 2 would be diffible at 2. However we know (and have proved) that Z is NOT diff ble anywhere. So I cannot be diffible at Z = 0. Conclusion: 1212 is differentiable at 2=0, and NOWHERE ELSE!

What are the fructions we know that are diffill? Polynomials: f(2) = ao + a, 2 + ... + an 2ⁿ. (on their domains of dependence) $R(z) = \frac{a_0 + a_1 + \dots + a_n + a$ with at least one bi non-zuo.

Depunitions: 1. Let f: G -> C be a function with G open. Then I is sound to be analytic on G, if it is differentiable at every point of br.

2. Let so be an interior point of a set S and

$$f: S \longrightarrow C$$
 a function. We say f is analytic at 20
if attend to a relighbourhood of 30 on which f
is analytic.
 $(4 + \pi)$ [[[The function $f(E) = |E|^2$ is diffible of $Z_0 = 0$.
Let $The function f(E) = |E|^2$ is diffible of $Z_0 = 0$.
The Canady-Riemann equations:
Let $Z_0 \in C$ and suppose f is function defined in
a right of Z_0 and suppose f is difficultiable of Z_0 .
Write: $Z_0 = \pi_0 + i\gamma_0$
 $\pi_0, \gamma_0 \in \mathbb{R}$.
 $f(E) = u(E) + iv(E)$
 $u(E) = u(E_0) - f(Z_0)$
 $unite$
 Δz
 Δz
 $unite$
 $\Delta z = \Delta z + i\Delta y$.
 $f(Z_0) = d = \Delta z + i\Delta y$.
 $f(Z_0) = f(Z_0) = f(Z_0)$
 Δz
 $unite$
 $\Delta z = \Delta z + i\Delta y$.
 $f(Z_0 + \Delta z) - f(Z_0) = 1$
 $u(\pi_0 + \Delta z, y_0) + iv(\pi_0 + \Delta z, y_0)$
 $d = u(\pi_0, y_0) - iv(\pi_0, y_0)$

brine the limit of the LHS exists as
$$bz = bx \rightarrow 0$$
,
the limit of the PHS also exists. This means.
Inin $u(not 0x, y_0) - u(x_0, y_0)$
and
 $bx \rightarrow 0$
 bx
and
 $bx \rightarrow 0$
 $bx - 30$
 bx
 $bx - 30$
 bx
 $bx - 30$
 bx
 bx
 $bx - 30$
 $bx -$

Next, let
$$\Delta z \rightarrow 0$$
 through the imaginary axis. Have
 $\Delta z = i \Delta y$.

Nno

$$\frac{f(z_{0}+\Delta z)-f(z)}{\Delta z} = \frac{1}{\hat{v} \Delta y} \begin{cases} u(x_{0}, y_{0}+\Delta y) - u(x_{0}, y_{0}) \\ - \dot{v} [v(x_{0}, y_{0}+\Delta y) - v(x_{0}, y_{0})] \end{cases}$$

$$= \frac{u(x_{0}, y_{0}+\Delta y_{1}) - u(x_{0}, y_{0})}{i \Delta y} + i \frac{v(x_{0}, y_{0}+\Delta y_{1}) - v(x_{0}, y_{0})}{i \Delta y}$$
Let $\Delta z = i \Delta y = 0$. Get
 $f'(z_{0}) = \frac{i}{i} \frac{\partial u}{\partial y} (x_{0}, y_{0}) + i \frac{i}{i} \frac{\partial v}{\partial y} (x_{0}, y_{0}).$

$$f'(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$f'(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$f(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$f(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$f(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$f(z_{0}) = \frac{\partial v}{\partial y} (x_{0}, y_{0}) - i \frac{\partial u}{\partial y} (x_{0}, y_{0}).$$

$$\frac{\partial u}{\partial x} (x_0, y_0) = \frac{\partial v}{\partial y} (x_0, y_0)$$

$$\frac{\partial u}{\partial x} (x_0, y_0) = -\frac{\partial v}{\partial x} (x_0, y_0)$$

$$\frac{\partial u}{\partial y} (x_0, y_0) = -\frac{\partial v}{\partial x} (x_0, y_0)$$

$$\frac{\partial u}{\partial x} (x_0, y_0) = -\frac{\partial v}{\partial x} (x_0, y_0)$$

$$\frac{\partial u}{\partial x} (x_0, y_0) = -\frac{\partial v}{\partial x} (x_0, y_0)$$

Example: Let us revisit
$$f(z) = \overline{z}$$
.
White $f = u + iv$, $z = z + iv$ etc.
 $f(x, y) = z - iv$
 $u(x, y) = z$, $v(x, y) = -y$.
 $\partial u = 1$, $\partial v = -1$
 $\partial z = 1$, ∂y
 $\Rightarrow \quad \partial u(x, y) \neq \partial v(x, y)$ for any $z = z + i v$.
 $\partial u = 1$, ∂y for any $z = z + i v$.

 $\frac{\text{Example}: \text{ Define exp}: \mathbb{C} \longrightarrow \mathbb{C} \text{ by}}{\exp(2) = e^{\text{Re}(2)} \left\{ \cos(\text{Im}(2)) + i \sin(\text{Im}(3)) \right\}}.$ Then exp(2) is analyte on C.

It: write e² for exp(2), and z = x+iy. $f(z) = e^{2} = e^{x} (coy + i siny).$ u (x,y) = ex cosy , v(x,y) = ex in (y) dy = ex con (y) Du = excory, Controus du = - e^x sing, dv = e^x mig. Dy the Camby-Diemann equations hold. So if you betwee the theorem, e² is amalytis.