Recall: Suppore f is a complex-valued funtions defines in a neighbowionk $\left\{z_{0} \in \mathbb{C}\right.$. We say f is continous at z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

Linits and infiunty:

1. We say $\lim _{z \rightarrow z_{0}} f(z)=\infty$ if $\lim _{z \rightarrow z_{0}}|f(z)|=\infty$. According to real vaniable Calconks this meaus lte follooing: Given a positure real number $M>0$, there exists $\delta>0$ sunh that

$$
|f(z)|>M
$$

whenever $0<\left|z-z_{0}\right|<\delta$.

2. We alo spoke about $\lim _{z \rightarrow \infty} f(z)$.

Recall we difoned it as

$$
L=\lim _{\omega \rightarrow 0} f\left(\frac{1}{\omega}\right)
$$

This means, given $\varepsilon>0, \exists \delta>0$ suck that whenever $0<|\omega|<\delta$ we have

$$
\left|f\left(\frac{1}{w}\right)-L\right|<\varepsilon .
$$

Let $R=\frac{1}{\delta}$. Note that the above is equivalent to saying that whenever $|z|>R$, we have

$$
|f(z)-L|<\varepsilon .
$$

This gives us an altervature definition of $\lim _{z \rightarrow \infty} f(z)$:
Definitorno (alternate def): Ld G be an unbounded est, and f a function on G. We say

$$
\lim _{z \rightarrow \infty} f(z)=L
$$

if for every $\varepsilon>0$ there exists an $R>0$ such that

$$
|f(z)-L|<\varepsilon
$$

whenever $|z|>R$.

Analyticity: Recall that if f is define nd in a null of a cols number z_{0}, we sexy f is diffoble at z_{0} if the limit

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

$\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{z_{0}}$
is called the
difference quotient
exists. In this case we call the above limit, the derivative of f at z_{0}, and denote the limit by the
symbols $f^{\prime}\left(z_{0}\right)$ or $\frac{d f}{d z}\left(z_{0}\right)$.

Example: Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function $f(z)=\bar{z}$.
(Recall: of $z=a+i b$, then $\bar{z}:=a-i b$.)
Then the difference quotient (tor $\Delta z \neq 0$)

$$
\text { (*) }\left\{\begin{aligned}
\frac{f(z+\Delta z)-f(z)}{\Delta z} & =\frac{\overline{(z+\Delta z)}-\bar{z}}{\Delta z} \\
& =\frac{\bar{z}+\overline{\Delta z}-\bar{z}}{\Delta z} \\
& =\frac{\overline{\Delta z}}{\Delta z}
\end{aligned}\right.
$$

Write $\Delta z=\Delta x+i \Delta y$, wilts $\Delta x, \Delta y$ real.
Let $\Delta z \rightarrow 0$ along the neal-axis. Then $\Delta y=0$ and $\Delta z=\Delta x$. Now $\overline{\Delta x}=\Delta x$, sure Δx is veal, and $\overline{\Delta z}=\Delta z$. This means the computation in $(*)$ yields

$$
\begin{equation*}
\frac{f(z+\Delta z)-f(z)}{\Delta z}=1 \tag{t}
\end{equation*}
$$

Let $\Delta z \rightarrow 0$ along the iminaginary axis. Then $\Delta_{z}=i \Delta_{y}$. No $(\overline{i \Delta y})=(\overline{0+i \Delta y})=0-i \Delta_{y}$ $=-i \Delta y$. So $\overline{\Delta z}=-\overline{\Delta z}$ in this case. This means the computations $i \bar{\sim}(x)$ yields:

$$
\begin{equation*}
\frac{f(z+\Delta z)-f(z)}{\Delta z}=-1 \tag{t}
\end{equation*}
$$

Comparing (t) and $(t t)$ we see that $\lim _{\Delta t \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$ does not exist fer any z.

Conclusion: The function $f(z)=\bar{z}$ is not differentiable at any $z \in \mathbb{C}$.

Example: Lit $f(z)=|z|^{2}$.
Clanin: This is di -able at $z=0$ and is not differentiable at any other z.

Differentiability at $z=0$:

$$
\begin{aligned}
\frac{f(0+\Delta z)-f(0)}{\Delta z} & =\frac{|0+\Delta z|^{2}-|0|^{2}}{\Delta z} \\
& =\frac{|\Delta z|^{2}}{\Delta z} \\
& =\frac{(\Delta z) \overline{(\Delta z)}}{\Delta z} \\
& =\overline{\Delta z} \longrightarrow 0 \text { as } \Delta z \rightarrow 0
\end{aligned}
$$

(Reason: $\Delta z=\Delta x+i \Delta y, \Delta z=\Delta x-i \Delta y$)
Couclunoin: $\quad z \longmapsto|z|^{2}$ is diff'ble at 0

Non-differentrability at $z \neq 0$:

$$
f(z)=z \cdot \bar{z} .
$$

We know that P and q ore diff ${ }^{\circ}$ be at z_{0}, then p / q is diff'ble at z_{0} (the trover was stated en the last class) provided $f\left(z_{0}\right) \neq 0$.
suppose $z \neq 0$. Then

$$
\bar{z}=\frac{f(z)}{z} .
$$

The function z is diffoble everywhere. If f was diff'le at $z(z \neq 0)$, then \bar{z} would be diff' ble at z. However we know and have proved) that \bar{z} is NOT diff'ble anywhere. so f can ot be diffible at $z \neq 0$.
Conclusion: $|z|^{2}$ is differentiable at $z=0$, and NOWHERE ELSE!

What are the functions we know that are diffoble?
Polynomials: $f(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}$.
Rational functions : $\quad R(z)=\frac{a_{0}+a_{1} z+\ldots+a_{n} z^{n}}{b_{0}+b_{1} z+\ldots+t_{m} z^{n}}$ with at least one b_{i} non-zuno.

$$
\left(\text { Reminder: } \lim _{z \rightarrow \infty} R(z)=\left\{\begin{array}{lll}
\frac{a_{n}}{b_{n}} & \text { if } n=m \\
0 & \text { if } & m>n \\
\infty & \text { if } & m<n .
\end{array}\right)\right.
$$

Definitions: . Let $f: G \rightarrow \mathbb{C}$ be a function witt G open. Then f is said to be analytic on G, if it is differentiable at every point of G.
2. Let z_{0} be an interiver point f a set S and $f: S \longrightarrow \mathbb{C}$ a funtion. We sang f is analytur at bo if thave is a reighbounhood of z_{0} on while f is analytu.
$(* * x)!!!$ The funtion $f(z)=|z|^{2}$ is dippble at $z_{0}=0$ Zbut it is not amalyere at $z_{0}=0$.

The Canchy-Riemam equations:
Let $z_{0} \in \mathbb{C}$ and suppoce f is fruntion defincd in a noled A and suppre f is dipperentiatle at z_{0}.
white :

$$
\left.\begin{array}{rl}
z_{0} & =x_{0}+i y_{0} \\
z & =x+i y \\
f(z) & =u(z)+i v(z) \\
& =u(x, y)+i v(x, y)
\end{array}\right\}\left\{\begin{array}{l}
x_{0}, y_{0} \in \mathbb{R} \\
x, y \in \mathbb{R} \\
u(z)=u(x, y) \in \mathbb{R} \\
v(z)=v(x, y) \in \mathbb{R} .
\end{array}\right.
$$

know $f^{\prime \prime}\left(z_{0}\right)$ erists ssince f is diffeble at z_{0}. This means

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \quad \text { exits. }
$$

wate $\quad \Delta t=\Delta x+i \Delta y$.
First let $\Delta z \rightarrow 0$ along lte real axis. Then
$\Delta z=\Delta x$, and the differeme quotient

$$
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{1}{\Delta x}\left\{\begin{array}{l}
u\left(x_{0}+\Delta x, y_{0}\right)+i v\left(x_{0}+\Delta x_{,} y_{0}\right) \\
-u\left(x_{0}, y_{0}\right)-i v\left(x_{0}, y_{0}\right)
\end{array}\right\}
$$

Since the limits of the LHS exists as $\Delta z=\Delta x \rightarrow 0$, the limit of the RHS also exists. This means.
and

$$
\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{1}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}
$$

$$
\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{1}, y_{1}\right)}{\Delta x}
$$

exist i.e., $\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)$ exits $\& \frac{\partial v}{\partial x}\left(x_{0}, y_{1}\right)$ exits
Moreover,

$$
f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
$$

Next, let $\Delta z \rightarrow 0$ through the imaginary axis. Nave

$$
\Delta z=i \Delta y .
$$

No no

$$
\begin{aligned}
\frac{f\left(z_{0}+\Delta z\right)-f(z)}{\Delta z} & =\frac{1}{i \Delta y}\left\{\begin{array}{r}
u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right) \\
+i\left[v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]
\end{array}\right\} \\
& =\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{i \Delta y}+i \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{i \Delta y}
\end{aligned}
$$

Let $\Delta z=i \Delta y \rightarrow 0$. Get

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\frac{1}{i} \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)+i \cdot \frac{1}{i} \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) . \\
f^{\prime}\left(z_{0}\right) & =\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)-i \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

Form the two boxed equentions we coulule that:

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \\
\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=-\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)
\end{array}\right\} \begin{aligned}
& \text { The campy- } \\
& \text { Rienam equs } \\
& \text { when } f \text { is dyfile } \\
& \text { at } z_{0} .
\end{aligned}
$$

Example: Lit us revisit $f(z)=\bar{z}$. write $f=u+i v, \quad z=x+i y$ etc.

$$
\begin{aligned}
& f(x, y)=x-i y \\
& u(x, y)=x, \quad v(x, y)=-y . \\
& \frac{\partial u}{\partial x}=1, \quad \frac{\partial v}{\partial y}=-1 . \\
& \Rightarrow \quad \frac{\partial u}{\partial x}(x, y) \neq \frac{\partial v}{\partial y}(x, y) \text { fer any } z=x+i y .
\end{aligned}
$$

In other wards f is nowhere diffoble on \mathbb{C}.

Thoovan: Let G be an open set, $f=u+i v$ a complex valued function on G such that $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ exist on G and are continuous on G. Supple

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

on G. Then $f i s$ analyse on G.

Example: Define exp: $\mathbb{C} \longrightarrow \mathbb{C}$ by

$$
\exp (z)=e^{\operatorname{Re}(z)}\{\cos (\operatorname{Im}(z))+i \sin (\operatorname{Im}(z))\} .
$$

Then $\exp (z)$ is analytur on \mathbb{C}.

14: Wite e^{z} for $\exp (z)$, and $z=x+i y$.

$$
\left.\begin{array}{rl}
f(z) & =e^{z}=e^{x}(\cos y+i \sin y) . \\
u(x, y)=e^{x} \cos y \quad v v(x, y)=e^{x} \sin (y) \\
\frac{\partial u}{\partial x}=e^{x} \cos y, \quad \frac{\partial r}{\partial y}=e^{x} \cos (y) \\
\frac{\partial u}{\partial y}=-e^{x} \sin y, \frac{\partial r}{\partial x}=e^{x} \text { sui. }
\end{array}\right\} \begin{aligned}
& \text { Conlious } \\
& m R^{2} \\
& =\mathbb{Q}
\end{aligned}
$$

Clearly the Cannly-Riemann equations hold. So if yon belie the theorem, e^{t} is amalytur.

