Last time: Defined a circular neighbourhood or an open disk centered at 20 07 radius 2: $B_{\varepsilon}(z_{\delta}) = \begin{cases} z \in \mathcal{C} \mid |z - z_{0}| < \varepsilon \end{cases}$ If S is a subset of C and EDES, then " 20 is an interior point of S" 'y (I) E>O s.C. Bc (20) CS "There exists" " such that ! bdry pt . • - not an boundary pont or an interrept. Let SCG. A point ZOE (not necessarily in S!) is said to be a boundary point or a frontion point if every circular neighbourhood of 20 contains a point in S as well as a point ontside S. An induit S of C is called an open set if every point of S is an interior point of S. A subset of S is called closed if it contains all ite boundary points. Notation: 35 = boundary of S.

Examples : 1. Open disk Be (20). By the triangle inequality Be (20) is open. To see this pick 2 C Be (20). Let &= |2-20| < E. Le OCREE-S. Guniden Br(2) = { wel | w-2| < r} y w∈ Br(2), then $| w - 2 \delta | \leq | w - 8 | + | 2 - 2 \delta |$ < r + 8 < (E-2) +3 =8 Lo [w- Zo] < €, 1, w ∈ B_E(Zo). $b_{r}(z) \subset B_{\varepsilon}(z_{0}).$ This proves that open disks are open. (2) Chried drie S= { Z G C | Z-Zol S r f. This is not open became points on the circum ference, ie. points zec sit. |z-zo| = 2, are in S but are not interior points. However (check this) S is closed. (Check that $\partial S = \{2 \in \mathbb{C} \mid 2 - 2_0 \mid = 2_0\}$ (4) Punctured disk (3): S= {zec 0< |z-zo| < e} or S= { t∈C | o< |z-20| ≤ C }.

In either care (check this !) ∂S = {z₀} ∪ {zec | 1z-zol=ε} In the first care, we have an open set (chuk). (5)I an interval in R C C. Is it open? (Ans: No!) Uned (yes if the I end points are in I) $\partial I = 7$ I U fend-pointo of I) Depinition: A polygonal path converting 3, EC with ZZEC is a finite sequence of line seguents Li, Lz, ..., Ln, with Li and Lier having a common end-pt. Polygonal path joing 2, to 22. Depintion: Anopen set is said to be connected if any two points in S can be connected by a polygonal path lying entirely in S.

Connected. Definition: A connected open set is called a domain, A region is a domain together with some or all or none of its boundary points. Defn: A set SCC is seried to bounded of there exists R>O such that IZICR (+) ZES. " for all". This is the same as saying SC Bp (0) Example : C is not bounded. R is not bounded. The upper half plane {& e c | Jm(&) > 0 y is not bl. However Bp (0) is bounded.

Functions:
he are interested in complex valued function

$$f: S \longrightarrow C$$
 on sets in $C(SCC)$.
donain $q.f.$
 $2ouge (f) = f z \in C \} z = f(s)$ for some set Sg .

Examples:
1.
$$f(2) = 2$$
, $2 \in \mathbb{C}$.
Domain $A f = \mathbb{C}$
2. $f(2) = \frac{2}{2^{2}+1}$.
Domain $A f = \mathbb{C} - \{\pm i\}$.
3. $f(2) = 2^{2}$. Domain $A f = \mathbb{C}$.
Juppone $3 = 2 + iy$, $x, y \in \mathbb{R}$,
and $f(2) = u(2) + iv(2)$, $u(2)$, $v(2) \in \mathbb{R}$
 $= u(2y) + iv(2y)$
4 $f(2) = 2^{2}$. $u = ? v = ?$
 $3 = 2 + iy \implies 3^{2} = 2^{2} - y^{2} - i(2zy)$
So $u(2x, y) = 2^{2} - y^{2}$
 $v(2, y) = 2zy$.

combe 17.

f(2) = 2+2i+3 on the unit squar 3. Unit square = { Z | OSR(2) E |, OS Ju(2) S |} E lange f 3+2i trandate everything by the vertil 3+2i 1 rain f Limits and Contrainty : Definition: Let {Zu} be a sequence of complexo numbers. We say Ezng converges to Zo EC of # E70 JNEN S.L. 3- 105 -51 for all nZN. In this care we write 2n -> 20 as n-> 0 On $\lim_{N \to \infty} 2_N = 2_0.$ • & . 2 & . • 74

Note: Using the fact that

$$|le(e)| \leq |t| \text{ and } |Tm(e)| \leq |t|$$
we can chuld that

$$|lin_{top} the |t_{tot}| \text{ the tot}$$

$$|lin_{top} the (e_{1}) = t_{0} \text{ and } adying \begin{cases} \lim_{n \to \infty} le(e_{1}) = t_{0}(e_{1}) \\ \lim_{n \to \infty} Tm(e_{1}) = Tm(e_{1}) = Tm(e_{1}) \\ \lim_{n \to \infty} Tm(e_{1}) = Tm(e_{1}) = Tm(e_{1}) \end{cases}$$

$$|le(e_{1}-2e_{1})| \leq |t_{1}-2e_{1}| \in |Tm(e_{1}-2e_{1})| \leq |t_{1}-e_{0}|.$$

$$Prof with be supplied at the end of there unless.$$

$$|le(e_{1}-2e_{1})| \leq |t_{1}-2e_{1}| \in |Tm(e_{1}-2e_{1})| \leq |t_{1}-e_{0}|.$$

$$Prof with be supplied at the end of there unless.$$

$$|le(e_{1}-2e_{1})| \leq |t_{1}-2e_{1}| = a_{1} + (t_{1}-2e_{1}) = a_{1} + (t_{1}-2e_{1$$

Definition: Inoppus of is a function definied in some reguloour hood of 20. Then we say lùn f(2) = W0 ing for every EZO I 670 set the with 0< 12-20 < 8 we have lf(≥) - f(≥)) < € We also say $\lim_{z \to z_1} f(z) = \infty$ ┥ hún (f(z)) = 2 Estra notes of topis not covered in the Lecture. (Will cover them in class on Tresday Jan 25, but do read) what is in home. Definition : hat to be a point in SCC. We say fin continens if it is continuous at every point of S. Examples: I. Jring ⊥ &→i ₹ If there is any justice in the world, the answer should be Yi. Why is it /i? Would be great if him f(z) = dim f(z) g(z) him a (z) him g (2) We will come back to this question later.

2. Checklete
$$\lim_{\substack{x \to -i \\ y \to -i \\ y \to -i \\ y \to -i \\ y \to -i \\ (produl et i = 1)}$$

 $\frac{x - 2 + i}{y + 2 + i} = \frac{2 - i}{y + 2 + i} = \frac{1}{y + 2 + i}$
 $\frac{x - 2 + i}{y + 2 + i} = \frac{2 - i}{y + 2 + i} = \frac{1}{y + 2 + i}$
 $\frac{x - 2 + i}{y + 2 + i} = \frac{1}{y + 2 + i} =$

grien by a formula of the following build

$$p(k) = a_0 + a_k^2 + a_k^2 + \dots + a_k^{\infty}$$
,
where a_0, a_1, \dots, a_k are constant complex numbers.
A antimely function is a function of the following
form
 $f(k) = p(k) = a_k + a_1 + \dots + a_k^{2k}$, $a_1, b_1 \in C$.
 $f(k) = f(k) = b_1 + \dots + b_m + b_m + b_m}$, $a_2, b_1 \in C$.
where p and q are polynomial function and
 q is not identically gets.
Is have are obsamples f continuous function.
(i) $f(k) \equiv C$, c a constant, $k \in C$. Then f is
continuous on C . (1) be that $\lim_{k \to 0} f(k) = \lim_{k \to 0} c = c \in f(k)$.)
(2) $f(k) \equiv 3$, $k \in C$. Then f is continuous on C .
(build the limit form the $b = b_1 = b_1 = c = c = f(k)$.)
(3) From the theorem it follows that $polynomial$
 a_k continuous $M C$, since a polynomial is
 a combination $M C$, since a polynomial is
 a combination f is more and products q occumptes(i)
 $a_1 d(k) : p(k) \equiv a_0 + a_1 + \dots + a_m + a$

More examples:

1.
$$\lim_{z \to i} \frac{1}{z} = \frac{1}{z}$$

2. $\lim_{z \to i} \frac{z}{z^2 + 1}$. This is not defined at $z = z$.
 $\lim_{z \to i} \frac{z}{z^2 + 1}$.
 $\lim_{z \to i} \frac{1}{|z^2 + 1|} = \frac{|z|}{|z^2 + 1|} = \infty$ as $z = z$.

3.
$$\lim_{k \to 0^{-1}} \frac{2}{2^{k+1}}$$

2. This is not defined at $2 = \frac{1}{2^{k+1}}$
Define a new function
 $\int : C \cdot \{i\} \longrightarrow C$
by the rule
 $\int (2) = \int \frac{4}{2^{k+1}}, \ 2 \neq i, i$
 $\int \frac{1}{2^{i}}, \ 3 \neq -i.$
Then $\int \frac{1}{2^{i}}$ or times on $C \cdot \{i\}$. In other words
" $\int bas a 'romonable singularity' at i' we will
define 'removable singularity' none formally late
in the courte.
Definition: $\lim_{k \to \infty} \int (2^{k}) = \lim_{k \to \infty} \int (\frac{1}{2^{k}-1}).$
4. (a) $\lim_{k \to \infty} \frac{2}{2^{k+1}} = \lim_{k \to \infty} \frac{2^{k}}{2^{k}-1}$
 $= \lim_{k \to \infty} \frac{1}{1+k^{2}-1}$$

(b)
$$\lim_{z \to \infty} \frac{iz-2}{4z+i} = i/4$$

 $z \to \infty$ $\frac{4z+i}{4z+i}$
(heale: Set $w = \frac{1}{2}$
 $\frac{iz+2}{4z+i} = \frac{i}{4} = \frac{i+2w}{4+iz} \xrightarrow{\rightarrow} \frac{1}{4} = \frac{w \to 0}{4}$

Solutions: Set
$$w = 1/2$$
.
 $a_0 + a_1 + a_n + a$

$$b_0 + b_1 + \dots + b_m \frac{2^m}{m} = \frac{1}{x_0^m} \left(b_0 w^m + b_1 w^{m-1} + \dots + b_m w + b_m \right)$$

St follows that

$$\frac{a_{0} + a_{1} \geq + \dots + a_{n} \geq^{n}}{b_{0} + b_{1} \geq + \dots + b_{m} \otimes^{m}} = \frac{a_{0} \cup^{m} + \dots + b_{m} \cup^{n} + a_{m}}{b_{0} \cup^{m} + \dots + b_{m}} \xrightarrow{a_{0} \cup^{m} + \dots + b_{m$$