Last Time: Polar coordinates.
If $z \neq 0$, then can write
$(*) \longrightarrow z=r e^{i \theta}$

$$
r>0, \quad \theta \in \mathbb{R}
$$

This is the poler for of z. Here

$$
r=|z|=\left\{\operatorname{Re}(z)^{2}+\operatorname{In}(z)^{2}\right\}^{1 / 2} .
$$

The θ 's satisfying (x) form a set denoted $\arg (z)$. If $\theta_{1}, \theta_{2} \in \arg (z)$ then

$$
\theta_{2}-\theta_{1}=2 \pi k \quad, \quad k \in \mathbb{Z} .
$$

Conversely, if $\theta_{1} \in \operatorname{ang}(z)$ and $\theta_{1}-\theta_{2}=2 \pi k$ for some integer k, then θ_{2} also lies in $\operatorname{ang}(z)$. Indeed

$$
\begin{aligned}
e^{i\left(\theta_{2}-\theta_{1}\right)}=\frac{e^{i \theta_{2}}}{e^{i \theta_{1}}} & =\frac{e^{i\left(\theta_{1}+2 \pi k\right)}}{e^{i \theta_{1}}} \\
& =\frac{e^{i \theta_{1}}}{e^{i \theta_{i}}} \cdot e^{i 2 \pi k} \\
& =1
\end{aligned}
$$

So $e^{i \theta_{2}}=e^{i \theta_{1}}$ whence

$$
r e^{i \theta_{2}}=r e^{i \theta_{1}}=z
$$

$\operatorname{Arg}(z)$ is the enrique couples numlue in $\arg (z) \cap(-\pi, \pi]$.

$$
\begin{aligned}
& \operatorname{Arg}(i)=\pi / 2 \\
& \operatorname{Arg}(-i)=-\pi / 2 .
\end{aligned}
$$

Multiplication as rotation:
Let $z_{1}, z_{2} \in \mathbb{C}-\{0\}, \quad z_{1}=r_{1} e^{i \theta_{1}}, \quad z_{2}=r_{2} e^{i \theta_{2}}$.
Hence

$$
\begin{aligned}
& z_{1} \cdot z_{2}=r_{1} r_{2} e^{i \theta_{1}} \cdot e^{i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

- $z_{1} z_{2}$ is obtained by taking the vector z_{1}, sealing its length by a factor of r_{2}, and then rotating the vector by our angle of θ_{2}.

Note: 1. Multiplying by is anconts to rotating by $\pi / 2$ without altering the length.
2. Multiplying by $e^{i \theta}$ amounts to rotating by an angle A without alter ninny the leytur $\left(e^{i \theta}=\cos \theta+i \sin \theta \Rightarrow\left|e^{i \theta}\right|=\sqrt{\cos ^{2}+\sin ^{2}}=1.\right)$

- z_{1} / z_{2} auvonto to scaling z_{1} by a faitor of $\frac{1}{r_{2}}$ and rotating the resulting venter by $-\theta_{2}$.

D' Moore's primula:

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta) \quad n \in \mathbb{Z}
$$

"Pf":

$$
\left(e^{i \theta}\right)^{n}=e^{i(n \theta)}
$$

Roots of unity:
Problem : Let m be a positive integer. Find all the $m^{\text {the }}$ roots of 1 , ie., find all the solution of

$$
z^{m}=1
$$

Example: Ind all solution of $z^{4}=1$.
Sole:
know $\quad e^{2 \pi i) n}=1, \quad n \in \mathbb{Z}$.
So $\quad\left(e^{2 \pi i}\right)^{n / 4}=\cos \left(\frac{2 \pi n}{4}\right)+i \sin \left(\frac{2 \pi n}{4}\right), n \in \mathbb{Z}$ is a fourth root of 1. In greater detail.

$$
\left\{e^{2 \pi i\left(\frac{n}{4}\right)}\right\}^{4}=e^{2 \pi i n}=1 \quad \forall n \in \mathbb{Z}
$$

Let

$$
w_{4}=e^{2 \pi i / 4} .
$$

Then $\quad w_{4}^{4}=1$.

$$
\begin{array}{llll}
1 & =\omega_{4}^{0}, & \omega_{4}, & \omega_{4}^{2}, \\
11 & \omega_{4}^{3} \\
1 & =\omega_{4}^{4}, & \omega_{4}^{5}, & \omega_{4}^{6}, \\
11 & \omega_{4}^{7} \\
1 & =\omega_{4}^{8}, & \omega_{4}^{9}, & \omega_{4}^{10}, \\
& \omega_{4}^{11}
\end{array}
$$

More formally, if $\eta \in \mathbb{C}$ sunk that

$$
\eta^{4}=1
$$

then $|\eta|=1$, so $\eta=e^{i \theta}$ for some θ.
Hence

$$
\begin{array}{ll}
& \left(e^{i \theta}\right)^{4}=1, \\
\text { ie. } & e^{i(4 \theta)}=1 \\
\text { so } \quad & 4 \theta \in \operatorname{ang}(1)=\{2 \pi n \mid n \in \mathbb{Z}\} .
\end{array}
$$

truce $4 \theta=2 \pi n$ for some n,

$$
\text { i.e. } \quad \theta=2 \pi\left(\frac{n}{4}\right)
$$

We can write n as

$$
n=\underset{\tau_{\text {integer }}}{4 k+r}, r \in\{0,1,2,3\}
$$

$$
\begin{aligned}
\eta=e^{i \theta} & =e^{i\left(2 \pi\left(\frac{n}{4}\right)\right)} \\
& =e^{i\{2 \pi(4 k+r)\} / 4} \quad r \in\{0,1,2,3\} \\
& =e^{i(2 \pi k+r / 4)} \\
& =e^{i 2 \pi k} \cdot e^{i r / 4} \\
& =e^{i r / 4}=\omega_{4}^{r}, \text { and } r=\{0,1,2,3\}
\end{aligned}
$$

The only solutions are

$$
\begin{aligned}
& b \omega_{4}, w_{4}^{2}, \omega_{4}^{3} . \\
& \omega_{4}=e^{2 \pi i / 4}=e^{i(\pi / 2)}=i . \\
& \omega_{4}^{2}=i^{2}=-1 \\
& \omega_{4}^{3}=i^{3}=-i \\
& \omega_{4}^{4}=\omega_{4}^{0}=1
\end{aligned}
$$

2. The came analysis for $z^{12}=1$ gris:

the is the general solutions of

$$
\begin{equation*}
z^{m}=1 \tag{-x}
\end{equation*}
$$

where m is a positive integer (w eire done $m=4,12$) Set

$$
\begin{aligned}
w_{m} & =e^{2 \pi i / m} \\
& =\cos \left(\frac{2 \pi}{m}\right)+i \sin \left(\frac{2 \pi}{m}\right)
\end{aligned}
$$

Then the distinct solutions of $(*)$ are

$$
1=w_{m}^{0}, w_{m}, w_{m}^{2}, \ldots, w_{m}^{m-1}
$$

m solutions.
Chare that $z^{m}-1=(z-1)\left(z-\omega_{m}\right)\left(z-\omega_{m}^{2}\right) \cdots\left(z-\omega_{m}^{m-1}\right)$
Example: Show that $1+w_{m}+w_{m}^{2}+\ldots+w_{m}^{m-1}=0$
Solution: Recall that for nunlerer x (geometric series)

$$
1+x+x^{2}+\ldots+x^{m-1}=\frac{1-x^{m}}{1-x}
$$

Therefore

$$
\begin{aligned}
1+w_{m}+w_{m}^{2}+\ldots+w_{m}^{m-1} & =\frac{1-w_{m}^{m}}{1-w_{m}} \\
& =\frac{1-1}{1-w_{m}} \\
& =0
\end{aligned}
$$

Example: Lit $z \in \mathbb{C} \backslash\{0\}$ and n a positive integer. Solve the equation

$$
3^{m}=z \longleftarrow \text { known (3 is the imbuoven) }
$$

per 3.
Solution: Let

$$
z=r e^{i \theta}
$$

be a polar form of z.
Let $\eta=r_{r}^{1 / m} e^{i \theta / m}$.
Chare that

$$
3=\eta=\omega_{m}^{0} \cdot \eta, 3=\omega_{m} \eta, \ldots, 3=\omega_{m}^{m-1} \eta
$$

are the only solutions of $\zeta^{m}=z$.
Future explanation: Lit $\zeta=\eta^{\prime}$ be another sols
of $3^{m}=z$. Then

$$
\left(\eta^{\prime}\right)^{m}=r e^{i \theta}
$$

It follows that $\left|\eta^{\prime}\right|=r^{1 / m}$, 20

$$
\eta^{\prime}=r^{1 / m} e^{i \phi}
$$

for some ϕ.

$$
z=r e^{i \theta}=\left(\eta^{\prime}\right)^{m}=\left(r^{1 / m} e^{i \phi)^{m}}=r e^{i(n \phi)}\right.
$$

Thus $m \phi \in \arg (z)$. lo
$m \phi=\theta+2 \pi n$ for tome $n \in \mathbb{Z}$.
Herne $\quad \phi=\frac{\theta}{m}+\frac{2 \pi n}{m}$.

$$
\begin{aligned}
\eta^{\prime}=r^{1 / m} e^{i \phi} & =r^{1 / m} e^{i\left(\theta / m+\frac{2 \pi n}{m}\right)} \\
& =r^{1 / m} e^{i \theta / m} \cdot e^{i(2 \pi n / m)} \\
& =\eta \cdot \omega_{m}^{n}
\end{aligned}
$$

But $\omega_{m}^{n}=\omega_{m}^{k}$, for some $k \in\{0,1, \ldots m-1\}$.
so $\quad \eta^{\prime}=\eta \cdot \omega_{m}^{k}$, for some $k \in\{0,1, \ldots, m-\}$

Planar Soto

Definitions:
(1) Let $z_{0} \in \mathbb{C}$, and ε a positive real number $(\varepsilon>0)$

$$
B_{\varepsilon}\left(z_{0}\right)=\left\{z \in \mathbb{C}| | z-z_{0} \mid<\varepsilon\right\}
$$

This is called the open disk of radius ε centred at z_{0}.
(2) Let $S \subset \mathbb{C}$ and $z_{0} \in S$. We say z_{0} in an intervir points of S if $\exists \varepsilon>0$ sulk that $B_{\varepsilon}\left(z_{0}\right) \subset S$.

(3) A bouradayy point or frontier point of S CS as above) is a point sunk that every open ball centred at thant point contains at least one point I S and n one point ont side S
(4) If every point of S in an intevor point, we call S an open set.

Examples: 1. A clock hick, ie. $\left\{z \in \mathbb{C}\left|\left|z-z_{0}\right| \leq \varepsilon\right\}\right.$, is not open. It contains $B_{\varepsilon}\left(z_{0}\right)$ and the bounding
circle. The bombing circle is the bombarys ic. The set I boundary points.
2. The open disk $B_{\varepsilon}\left(z_{b}\right)$ is open. This requires the tbivengle incqualiting (try proving it yourself using the Δ-inner.)
3. The punctured disk $\left\{z \in \mathbb{C}\left|0<\left|z-z_{0}\right|<\varepsilon\right\}\right.$ las as boundary $C \cup\left\{z_{0}\right\}$, where C is the bounding circle $\left\{z \in \mathbb{C}\left|\mid z-z_{0}=\varepsilon\right\}\right.$

PUNCTURED

