LECTURE 22

Date of Lecture: April 7, 2022

For $r>0$ and $a \in \mathbb{C}, B_{r}(a)$ will denote the open disc of radius r centred at a, and $C_{r}(a)$ the bounding circle of $B_{r}(a)$. In case $r=0$, we simplify the notation and write B_{r} and C_{r} for $B_{r}(a)$ and $C_{r}(a)$.

1. Residues

See also $\S 6.1$ of the textbook.
1.1. Isolated singularities and residues. Let f be an analytic function on a domain D with an isolated singularity at z_{0}. Recall from Lecture 20 that this means there is an open disc $B_{\rho}\left(z_{0}\right)$ centred at z_{0} such that the domain D contains the punctured disc $B_{\rho}\left(z_{0}\right) \backslash\{0\}$. Recall from that lecture that there are three kinds of isolated singularities, namely, (a) removable singularities; (b) poles; and (c) essential singularities. It is clear from the definitions that f has a pole of order n at z_{0} if and only if $\left(z-z_{0}\right)^{n} f(z)=g(z)$ has a removable singularity at z_{0}, in other words $\left(z-z_{0}\right) f(z)$ can be extended to an analytic function $g(z)$ on the domain $D \cup\left\{z_{0}\right\}$. In fact if

$$
\begin{equation*}
f(z)=\sum_{j=-n}^{\infty} a_{j}\left(z-z_{0}\right)^{j} \tag{1.1.1}
\end{equation*}
$$

is the Laurent expansion of f in $B_{\rho}\left(z_{0}\right)$, then $g\left(z_{0}\right)=a_{-n}$.
In the above situation, the residue of f at z_{0} is defined to be a_{-1}. We denote this residue by the symbol $\operatorname{Res}\left(f ; z_{0}\right)$ or simply as $\operatorname{Res}\left(z_{0}\right)$. Thus

$$
\begin{equation*}
\operatorname{Res}\left(f ; z_{0}\right)=a_{-1} \tag{1.1.2}
\end{equation*}
$$

It is clear from the Laurent expansion (1.1.1) and the fact that $a_{j}\left(z-z_{o}\right)^{j}$ has an anti-derivative in $\mathbb{C} \backslash\left\{z_{0}\right\}$ for all j except $j=-1$ that

$$
\begin{equation*}
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{2 \pi i} \oint_{C_{r}\left(z_{0}\right)} f(z) d z \tag{1.1.3}
\end{equation*}
$$

where r is a positive real number less that ρ, i.e. $0<r<\rho$, so that $C_{r}\left(z_{0}\right)$ lies in the punctured disc $B_{\rho}\left(z_{0}\right) \backslash\left\{z_{0}\right\}$.

Suppose f has a pole or a removable singularity at z_{0}. Then there exists a positive integer n such that $\left(z-z_{0}\right)^{n} f(z)$ has a removable singularity, i.e. there is an analytic fucntion g on $D \cup\left\{z_{0}\right\}$ such that $\left(z-z_{0}\right)^{n} f(z)=g(z)$ on D. In this case we have $\oint_{C_{r}\left(z_{0}\right)} f(z) d z=\oint_{C_{r}\left(z_{0}\right)} g(z) /\left(z-z_{0}\right)^{n} d z=(2 \pi i)((n-1)!)^{-1} g^{(n-1)}\left(z_{0}\right)$.

To summarise the last assertion, if n is a positive integer such that $\left(z-z_{0}\right) f(z)$ has a removable singularity at z_{0} then

$$
\begin{equation*}
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left\{\left(z-z_{0}\right)^{n} f(z)\right\} \tag{1.1.4}
\end{equation*}
$$

The $0^{\text {th }}$ derivative of a function is interpreted as the function itself. Thus when $n=1$, the right side of the above formula is the limit of $\left(z-z_{0}\right) f(z)$ as $n \rightarrow z_{0}$.

The following theorem is a generalisation of the formula in (1.1.3). It is called the Cauchy Residue Theorem.

Theorem 1.1.5. (The Cauchy Residue Theorem Let Γ be a simple loop oriented positively, and z_{1}, \ldots, z_{k} points in the interior of Γ. Suppose f is analytic on Γ and in the interior of Γ, except at z_{1}, \ldots, z_{k}. Then

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{j=1}^{k} \operatorname{Res}\left(f ; z_{j}\right)
$$

Proof. Let $C_{j}, j=1, \ldots, k$ be a circle in the interior of Γ centred at z_{j}, with $C_{i} \cap C_{j}=\emptyset$ for $i \neq j$. Let Γ_{1} and Γ_{2} be loops as shown in the Figure 1. Then for any continuous function ϕ on $\Gamma_{1} \cup \Gamma_{2}$, it is clear that $\int_{\Gamma_{1}} \phi(z) d z+\int_{\Gamma_{2}} \phi(z) d z=$ $\int_{\Gamma} \phi(z) d z-\sum_{j=1}^{k} \oint_{C_{j}} \phi(z) d z$. Thus

$$
\int_{\Gamma} f(z) d z-\sum_{j=1}^{k} \oint_{C_{j}} f(z) d z=\int_{\Gamma_{1}} f(z) d z+\int_{\Gamma_{2}} f(z) d z=0
$$

The last equality is due to the fact that f is analytic on the loops Γ_{1} and Γ_{2}, as well as in their interiors.

Figure 1. Γ is the outer loop in black, oriented positively. The dotted loop in red indicates the loop Γ_{1} and its direction, and the one in green does the same for Γ_{2}. The circles are the various C_{j}, for $j=1, \ldots, k$. In the picture $k=5$.

Thus

$$
\int_{\Gamma} f(z) d z=\sum_{j=1}^{k} \oint_{C_{j}} f(z) d z
$$

The required result now follows from (1.1.3).
1.2. Examples. Here are some examples. See $\S 6.1$ of the textbook for more examples of residues and applications of the Cauchy Residue Theorem. Also try out exercises at the end of the section.

1. $f(z)=e^{1 / z}$ has an isolated singularity at $z=0$. The singularity is an essential singularity. The Laurent expansion around $z=0$ is $\sum_{n=0}^{\infty} z^{-n} / n!$.
2. The functions $\frac{e^{z}-1}{z}, \frac{\sin z}{z}$, and, $\frac{1-\cos z}{z}$ have removable singularities at $z=0$. The Maclaurin series for these functions are $\sum_{n=0}^{\infty} \frac{1}{(n+1)!} z^{n}, \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} z^{2 n}$, and $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{(2 n)!} z^{2 n-1}$, respectively.
3. Find all the residues of $f(z)=\frac{1}{z^{2}(z-2)(z-5)}$. Evaluate $\oint_{|z|=3} f(z) d z$.

Solution: We will use the formula is (1.1.4). The function has isolated singularities is $z=0, z=2$, and $z=5$, According to that formula

$$
\begin{aligned}
& \operatorname{Res}(f ; 0)=\lim _{z \rightarrow 0} \frac{d}{d z}\left\{\frac{1}{(z-2)(z-5)}\right\}=\lim _{z \rightarrow 0} \frac{-(z-2)-(z-5)}{(z-2)^{2}(z-5)^{2}}=\frac{7}{100} \\
& \operatorname{Res}(f ; 2)=\lim _{z_{0} \rightarrow 2} \frac{1}{z^{2}(z-5)}=-\frac{1}{12} \\
& \operatorname{Res}(f ; 5)=\lim _{z_{0} \rightarrow 5} \frac{1}{z^{2}(z-3)}=\frac{1}{50}
\end{aligned}
$$

To evaluate $\oint_{|z|=3} f(z) d z$, note that the only singularities of f in the interior of C_{3} are $z=0$ and $z=2$. It follows from Cauchy's Residue Theorem that

$$
\oint_{|z|=3} f(z) d z=2 \pi i\left((\operatorname{Res}(f ; 0)+\operatorname{Res}(f ; 2))=2 \pi i\left(\frac{7}{100}-\frac{1}{12}\right)=-\frac{2 \pi i}{75}\right.
$$

4. Let $f(z)=\frac{1}{z \sin z}$ and $g(z)=\frac{1}{z^{2} \sin z}$. Find $\operatorname{Res}(f ; 0)$ and $\operatorname{Res}(g ; 0)$.

Solution: Since $\sin z$ has a simple zero at $z=0, z \sin z$ has a zero of order two at $z=0$, and $z^{2} \sin z$ has a zero of order three at $z=0$. These are isolated zeros. Therefore $f(z)$ has a pole of order 2 and $z=0$ and $g(z)$ has a pole of order 3 at $z=0$. The functions f and g have no other signularity in \mathbb{C}. In Example 2 above we showed that $\sin z / z$ has a removable singularity at $z=0$ and its Maclaurin series is $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} z^{2 n}$. Define

$$
h(z)= \begin{cases}\frac{z}{\sin z} & \text { if } z \neq 0 \\ 1 & \text { if } z=0\end{cases}
$$

Then $h(z)$ is analytic on \mathbb{C}. We then have

$$
f(z)=\frac{h(z)}{z^{2}} \quad \text { and } \quad g(z)=\frac{h(z)}{z^{3}}
$$

From (1.1.4) we see that

$$
\left.\operatorname{Res}(f ; 0)=h^{\prime}(0) \quad \text { and } \quad \operatorname{Res}_{(} g ; 0\right)=\frac{h^{\prime \prime}(0)}{2}
$$

It is somewhat complicated to follow the above recipe for computing residues. Here is an alternate way of doing this. Let $w=z^{2}$. Then

$$
\frac{\sin z}{z}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} w^{n}
$$

Let $\sum_{n=0}^{\infty} b_{n} w^{n}$ be a power series such that

$$
\left(\sum_{n=0}^{\infty} b_{n} w^{n}\right)\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} w^{n}\right)=1
$$

Then, clearly $h(z)=\sum_{n=0}^{\infty} b_{n} z^{2 n}$. Now $\operatorname{Res}(f ; 0)=\operatorname{Res}\left(h(z) / z^{2} ; 0\right)$ is the coefficient of z in the Maclaurin's expansion of $h(z)$, and since the Maclaurin's series for $h(z)$ has only even powers,

$$
\operatorname{Res}(f ; 0)=0
$$

To compute $\operatorname{Res}(g ; 0)=\operatorname{Res}\left(h(z) / z^{3} ; 0\right)$, we have to look for the coefficient of z^{2} in the Maclaurin's expansion of $h(z)$, and this is b_{1}. We can compute b_{1} as follows. We have

$$
\left(b_{0}+b_{1} w+b_{2} w^{2}+\ldots\right)\left(1-\frac{1}{6} w+\frac{1}{120} w^{2}-\ldots\right)=1
$$

It follows that $b_{0}=1$ and $b_{0}(-1 / 6)+b_{1}=0$, giving $b_{1}=1 / 6$. Thus

$$
\operatorname{Res}(g ; 0)=\frac{1}{6}
$$

5. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{13-5 \cos \theta} d \theta$. (See also Example 2 of Lecture 21.)

Solution: We have $\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)$. Let $z=e^{i \theta}$, so that $d \theta=\frac{d z}{i z}$. Then

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{13-5 \cos \theta} d \theta & =\oint_{C_{1}} \frac{d z}{(i z)\left\{13-\frac{5}{2}(z+(1 / z)\}\right.} \\
& =\frac{2}{i} \oint_{C_{1}} \frac{d z}{26 z-5 z^{2}-5} \\
& =2 i \oint_{C_{1}} \frac{d z}{5 z^{2}-26 z+5} \\
& =\frac{2 i}{5} \oint_{C_{1}} \frac{d z}{(z-5)\left(z-\frac{1}{5}\right)}
\end{aligned}
$$

Of the two poles of $\frac{1}{(z-5)\left(z-\frac{1}{5}\right)}$, only the one at $z=\frac{1}{5}$ lies in the interior of C_{1}. By the Cauchy Residue Formula, we therefore have

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{13-5 \cos \theta} d \theta & =\frac{2 i}{5}(2 \pi i) \operatorname{Res}\left(\frac{1}{(z-5)\left(z-\frac{1}{5}\right)}, 0\right) \\
& =-\frac{4}{5} \pi \lim _{z \rightarrow 1 / 5} \frac{1}{z-5} \\
& \left.=-\frac{4 \pi}{5\left(\frac{1}{5}-5\right.}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

The next example does not involve residues.
6. Suppose f is an entire function and there are positive real numbers R_{0} and M such that $|f(z)| \leq M|z|^{n}$ for all z with $|z|>R_{0}$. Show that f is a polynomial of degree at most n.

Solution: By the Cauchy estimates (see (2.1.1) of Lecture 16, or Theorem 20 on page 215 of the textbook), we have for all $k>0$,

$$
\left|f^{(n+k)}(0)\right| \leq \frac{n!M R^{n}}{R^{n+k}}=\frac{n!M}{R^{k}}
$$

Since $k>0$, the quantity on the right approaches 0 as $R \rightarrow \infty$. Thus $\left|f^{(n+k)}(0)\right|=0$ for $k>0, f^{(m)}(0)=0$ for all $m>n$. It follows that the Maclaurin's series for f is

$$
f(z)=\sum_{m=0}^{n} f^{(m)}(0) z^{m}
$$

which means f is a polynomial of degree less than or equal to n (the degree equals n if $\left.f^{(n)}(0) \neq 0\right)$.

