LECTURE 22

Date of Lecture: April 7, 2022

For r > 0 and a € C, B,(a) will denote the open disc of radius r centred at a,
and Cy(a) the bounding circle of B;,(a). In case r = 0, we simplify the notation
and write B, and C,. for B,.(a) and C,(a).

1. Residues
See also §6.1 of the textbook.

1.1. Isolated singularities and residues. Let f be an analytic function on a
domain D with an isolated singularity at zyp. Recall from Lecture 20 that this
means there is an open disc B,(29) centred at zo such that the domain D contains
the punctured disc B,(z0) ~ {0}. Recall from that lecture that there are three
kinds of isolated singularities, namely, (a) removable singularities; (b) poles; and
(c) essential singularities. It is clear from the definitions that f has a pole of order n
at zo if and only if (z — 29)™ f(2) = ¢g(z) has a removable singularity at zg, in other
words (z — zp)f(2) can be extended to an analytic function ¢g(z) on the domain
D U{zp}. In fact if

(1.1.1) f(z) = Z a;j(z — z)
Jj=—n
is the Laurent expansion of f in B,(zg), then g(z9) = a—_p.
In the above situation, the residue of f at zy is defined to be a_;. We denote
this residue by the symbol Res(f; z9) or simply as Res(zg). Thus

(1.1.2) Res(f;20) = a_1.

It is clear from the Laurent expansion (1.1.1) and the fact that aj(z — z,)’ has an
anti-derivative in C \ {zo} for all j except j = —1 that

(1.1.3) Res(f;20) = L]{ f(z)dz
C,(20)
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where 7 is a positive real number less that p, i.e. 0 < r < p, so that C,(z) lies in
the punctured disc B,(z9) \ {#0}

Suppose f has a pole or a removable singularity at zg. Then there exists a
positive integer n such that (z — 20)" f(z) has a removable singularity, i.e. there is
an analytic fuention g on DU{z} such that (z—z0)" f(z) = g(z) on D. In this case
we have fC,,.(zO) f(2)dz = fCr(zo) 9(2)/(z — z0)"dz = (2mi)((n — 1))~ Lg(» =V (2).

To summarise the last assertion, if n is a positive integer such that (z — zg) f(2)
has a removable singularity at zy then

dnfl

(1.1.4) Res(f;20) = (ni ol Zlingo P {(z—20)"f(2)}.

The 0" derivative of a function is interpreted as the function itself. Thus when
n = 1, the right side of the above formula is the limit of (z — 29) f(2) as n — 2o.
1



The following theorem is a generalisation of the formula in (1.1.3). It is called
the Cauchy Residue Theorem.

Theorem 1.1.5. (The Cauchy Residue Theorem Let T' be a simple loop oriented
positively, and z1, ...,z points in the interior of I'. Suppose f is analytic on T
and in the interior of T', except at z1,...,z. Then

k
/ f(z)dz = 2mi Z Res(f; z;).
r =

Proof. Let C;, j = 1,...,k be a circle in the interior of I' centred at z;, with
C;NCj; =0 for i # j. Let I'y and I'y be loops as shown in the FIGURE 1 Then
for any continuous function ¢ on I'y UTg, it is clear that fn z)dz + fr z)dz =

Jro(z)dz =375 1fc 2)dz. Thus

/Ff(z)dz - ch f(z)dz = /r f(z)dz + . f(2)dz =

The last equality is due to the fact that f is analytic on the loops I'y and I's, as
well as in their interiors.

FIGURE 1. T is the outer loop in black, oriented positively. The
dotted loop in red indicates the loop I'; and its direction, and the
one in green does the same for I'y. The circles are the various Cj,
for j =1,...,k. In the picture k = 5.

[t dz—zf I

The required result now follows from (1.1.3). g
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Thus



1.2. Examples. Here are some examples. See §6.1 of the textbook for more ex-
amples of residues and applications of the Cauchy Residue Theorem. Also try out
exercises at the end of the section.

1. f(2) = e!/# has an isolated singularity at z = 0. The singularity is an essential
singularity. The Laurent expansion around z = 01is >~ 2z~ "/nl.
e —1 sinz 1—cosz

2. The functions , , and, have removable singularities at z = 0.
z z z

The Maclaurin series for these functions are ZZOZO ﬁwv ZZO:O(_l)n mzzn,
and 22021(—1)”4’1@22"_1, respectively.
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3. Find all the residues of f(z) = 2(z—2)(z—5)

. Evaluate ?{ f(z)dz.
|z|=3

Solution: We will use the formula is (1.1.4). The function has isolated singularities
is 2=0, 2z =2, and z = 5, According to that formula

o d 1 . —(z=2)—(2=5) 7
a0 = 1y o ) < o~

1 1

Res(f;2) = lim —— = ——

es(fi2) =l =5~ 12
1 1

Res(f;5) = Z101§5 263 =%

To evaluate §|2|:3 f(2)dz, note that the only singularities of f in the interior of Cj
are z =0 and z = 2. It follows from Cauchy’s Residue Theorem that

P oy —omi( T L) 2w
]{2_3 f(z)dz = 2mi((Res(f;0) + Res(f;2)) = 271'1(100 12) =

and g(z) = ! . Find Res(f;0) and Res(g;0).

z2sin z

4. Let f(z) = —

zsin z
Solution: Since sinz has a simple zero at z = 0, zsinz has a zero of order two
at z = 0, and z?sin z has a zero of order three at z = 0. These are isolated zeros.
Therefore f(z) has a pole of order 2 and z = 0 and g(z) has a pole of order 3 at
z = 0. The functions f and g have no other signularity in C. In Example 2 above
we showed that sin z/z has a removable singularity at z = 0 and its Maclaurin series
is Z?:O(—l)”mz%. Define

z
if
h(z) =4 sinz ifz70
1 if z=0.
Then h(z) is analytic on C. We then have
h(z h(z
Fo=" g ="

From (1.1.4) we see that

Res(f;0) = 1'(0) and Res(g;0) =
3



It is somewhat complicated to follow the above recipe for computing residues. Here
is an alternate way of doing this. Let w = z2. Then

Let Y07, b,w™ be a power series such that
($rr) (St rter) o
n=0 n=0 (2n +1)!
Then, clearly h(z) = Y o7, b,2?". Now Res(f;0) = Res(h(z)/2?;0) is the coeffi-

cient of z in the Maclaurin’s expansion of h(z), and since the Maclaurin’s series for
h(z) has only even powers,

Res(f;0) = 0.
To compute Res(g;0) = Res(h(z)/23;0), we have to look for the coefficient of 22 in
the Maclaurin’s expansion of h(z), and this is ;. We can compute by as follows.
We have
(b0+b1w+b2w2+...)( —%w—&—ﬁw —) =1

It follows that by = 1 and by(—1/6) + by = 0, giving by = 1/6. Thus

Res(g;0) = =

2m

do

5. Evaluate / ————df. (See also Example 2 of Lecture 21.)
o 13—5cosd

) _ . d
Solution: We have cos = (e + e~%). Let z = €', so that df = % Then
iz

2 do dz
/0 13— boosd ™ ~ f{; (i2){13 = 3(z + (1/2)}

_2% dz
i e, 26z—5z2—5



1
————— 1, only the one at z = 1 Jies in the interior of Cj.
(z=5)(z—3)

5
By the Cauchy Residue Formula, we therefore have

2m .
do 21 1
——df = —(2mi)Res| ———,0
/0 13 —5cos@ 5( i) eS((z5)(zé)7 )
4 1

——7 lim
9 z—=1/52—05

47

Of the two poles of

™
6

The next example does not involve residues.

6. Suppose f is an entire function and there are positive real numbers Ry and M

such that |f(z)| < M|z|™ for all z with |z| > Ry. Show that f is a polynomial
of degree at most n.

Solution: By the Cauchy estimates (see (2.1.1) of Lecture 16, or Theorem 20 on

page 215 of the textbook), we have for all £ > 0,
ik n!MR"  n!M
R (0)] < Reth T RE
Since k > 0, the quantity on the right approaches 0 as R — oo. Thus | f(***)(0)| = 0
for k > 0, f(™(0) = 0 for all m > n. It follows that the Maclaurin’s series for f is

fz)=>_ f™(0)=m,
m=0

which means f is a polynomial of degree less than or equal to n (the degree equals

n if f0)(0) #£ 0).
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