
LECTURE 22

Date of Lecture: April 7, 2022

For r > 0 and a ∈ C, Br(a) will denote the open disc of radius r centred at a,
and Cr(a) the bounding circle of Br(a). In case r = 0, we simplify the notation
and write Br and Cr for Br(a) and Cr(a).

1. Residues

See also § 6.1 of the textbook.

1.1. Isolated singularities and residues. Let f be an analytic function on a
domain D with an isolated singularity at z0. Recall from Lecture 20 that this
means there is an open disc Bρ(z0) centred at z0 such that the domain D contains
the punctured disc Bρ(z0) r {0}. Recall from that lecture that there are three
kinds of isolated singularities, namely, (a) removable singularities; (b) poles; and
(c) essential singularities. It is clear from the definitions that f has a pole of order n
at z0 if and only if (z − z0)nf(z) = g(z) has a removable singularity at z0, in other
words (z − z0)f(z) can be extended to an analytic function g(z) on the domain
D ∪ {z0}. In fact if

(1.1.1) f(z) =

∞∑
j=−n

aj(z − z0)j

is the Laurent expansion of f in Bρ(z0), then g(z0) = a−n.
In the above situation, the residue of f at z0 is defined to be a−1. We denote

this residue by the symbol Res(f ; z0) or simply as Res(z0). Thus

(1.1.2) Res(f ; z0) = a−1.

It is clear from the Laurent expansion (1.1.1) and the fact that aj(z − zo)j has an
anti-derivative in Cr {z0} for all j except j = −1 that

(1.1.3) Res(f ; z0) =
1

2πi

∮
Cr(z0)

f(z)dz

where r is a positive real number less that ρ, i.e. 0 < r < ρ, so that Cr(z0) lies in
the punctured disc Bρ(z0) r {z0}.

Suppose f has a pole or a removable singularity at z0. Then there exists a
positive integer n such that (z − z0)nf(z) has a removable singularity, i.e. there is
an analytic fucntion g on D∪{z0} such that (z−z0)nf(z) = g(z) on D. In this case
we have

∮
Cr(z0)

f(z)dz =
∮
Cr(z0)

g(z)/(z − z0)ndz = (2πi)((n− 1)!)−1g(n−1)(z0).

To summarise the last assertion, if n is a positive integer such that (z − z0)f(z)
has a removable singularity at z0 then

(1.1.4) Res(f ; z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
{(z − z0)nf(z)}.

The 0th derivative of a function is interpreted as the function itself. Thus when
n = 1, the right side of the above formula is the limit of (z − z0)f(z) as n→ z0.
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The following theorem is a generalisation of the formula in (1.1.3). It is called
the Cauchy Residue Theorem.

Theorem 1.1.5. (The Cauchy Residue Theorem Let Γ be a simple loop oriented
positively, and z1, . . . , zk points in the interior of Γ. Suppose f is analytic on Γ
and in the interior of Γ, except at z1, . . . , zk. Then∫

Γ

f(z)dz = 2πi

k∑
j=1

Res(f ; zj).

Proof. Let Cj , j = 1, . . . , k be a circle in the interior of Γ centred at zj , with
Ci ∩ Cj = ∅ for i 6= j. Let Γ1 and Γ2 be loops as shown in the Figure 1. Then
for any continuous function φ on Γ1 ∪Γ2, it is clear that

∫
Γ1
φ(z)dz+

∫
Γ2
φ(z)dz =∫

Γ
φ(z)dz −

∑k
j=1

∮
Cj
φ(z)dz. Thus∫

Γ

f(z)dz −
k∑
j=1

∮
Cj

f(z)dz =

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz = 0.

The last equality is due to the fact that f is analytic on the loops Γ1 and Γ2, as
well as in their interiors.

Figure 1. Γ is the outer loop in black, oriented positively. The
dotted loop in red indicates the loop Γ1 and its direction, and the
one in green does the same for Γ2. The circles are the various Cj ,
for j = 1, . . . , k. In the picture k = 5.

Thus ∫
Γ

f(z)dz =

k∑
j=1

∮
Cj

f(z)dz.

The required result now follows from (1.1.3). �
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1.2. Examples. Here are some examples. See §6.1 of the textbook for more ex-
amples of residues and applications of the Cauchy Residue Theorem. Also try out
exercises at the end of the section.

1. f(z) = e1/z has an isolated singularity at z = 0. The singularity is an essential
singularity. The Laurent expansion around z = 0 is

∑∞
n=0 z

−n/n!.

2. The functions
ez − 1

z
,

sin z

z
, and,

1− cos z

z
have removable singularities at z = 0.

The Maclaurin series for these functions are
∑∞
n=0

1
(n+1)!z

n,
∑∞
n=0(−1)n 1

(2n+1)!z
2n,

and
∑∞
n=1(−1)n+1 1

(2n)!z
2n−1, respectively.

3. Find all the residues of f(z) =
1

z2(z − 2)(z − 5)
. Evaluate

∮
|z|=3

f(z)dz.

Solution: We will use the formula is (1.1.4). The function has isolated singularities
is z = 0, z = 2, and z = 5, According to that formula

Res(f ; 0) = lim
z→0

d

dz

{
1

(z − 2)(z − 5)

}
= lim
z→0

−(z − 2)− (z − 5)

(z − 2)2(z − 5)2
=

7

100

Res(f ; 2) = lim
z0→2

1

z2(z − 5)
= − 1

12

Res(f ; 5) = lim
z0→5

1

z2(z − 3)
=

1

50

To evaluate
∮
|z|=3

f(z)dz, note that the only singularities of f in the interior of C3

are z = 0 and z = 2. It follows from Cauchy’s Residue Theorem that∮
|z|=3

f(z)dz = 2πi((Res(f ; 0) + Res(f ; 2)) = 2πi

(
7

100
− 1

12

)
= −2πi

75

4. Let f(z) =
1

z sin z
and g(z) =

1

z2 sin z
. Find Res(f ; 0) and Res(g; 0).

Solution: Since sin z has a simple zero at z = 0, z sin z has a zero of order two
at z = 0, and z2 sin z has a zero of order three at z = 0. These are isolated zeros.
Therefore f(z) has a pole of order 2 and z = 0 and g(z) has a pole of order 3 at
z = 0. The functions f and g have no other signularity in C. In Example 2 above
we showed that sin z/z has a removable singularity at z = 0 and its Maclaurin series
is
∑∞
n=0(−1)n 1

(2n+1)!z
2n. Define

h(z) =

{ z

sin z
if z 6= 0

1 if z = 0.

Then h(z) is analytic on C. We then have

f(z) =
h(z)

z2
and g(z) =

h(z)

z3
.

From (1.1.4) we see that

Res(f ; 0) = h′(0) and Res(g; 0) =
h′′(0)

2
.
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It is somewhat complicated to follow the above recipe for computing residues. Here
is an alternate way of doing this. Let w = z2. Then

sin z

z
=

∞∑
n=0

(−1)n
1

(2n+ 1)!
wn.

Let
∑∞
n=0 bnw

n be a power series such that( ∞∑
n=0

bnw
n

)( ∞∑
n=0

(−1)n
1

(2n+ 1)!
wn

)
= 1,

Then, clearly h(z) =
∑∞
n=0 bnz

2n. Now Res(f ; 0) = Res(h(z)/z2; 0) is the coeffi-
cient of z in the Maclaurin’s expansion of h(z), and since the Maclaurin’s series for
h(z) has only even powers,

Res(f ; 0) = 0.

To compute Res(g; 0) = Res(h(z)/z3; 0), we have to look for the coefficient of z2 in
the Maclaurin’s expansion of h(z), and this is b1. We can compute b1 as follows.
We have

(b0 + b1w + b2w
2 + . . . )(1− 1

6w + 1
120w

2 − . . . ) = 1

It follows that b0 = 1 and b0(−1/6) + b1 = 0, giving b1 = 1/6. Thus

Res(g; 0) =
1

6
.

5. Evaluate

∫ 2π

0

dθ

13− 5 cos θ
dθ. (See also Example 2 of Lecture 21.)

Solution: We have cos θ = 1
2 (eiθ + e−iθ). Let z = eiθ, so that dθ =

dz

iz
. Then

∫ 2π

0

dθ

13− 5 cos θ
dθ =

∮
C1

dz

(iz){13− 5
2 (z + (1/z)}

=
2

i

∮
C1

dz

26z − 5z2 − 5

= 2i

∮
C1

dz

5z2 − 26z + 5

=
2i

5

∮
C1

dz

(z − 5)(z − 1
5 )
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Of the two poles of
1

(z − 5)(z − 1
5 )

, only the one at z = 1
5 lies in the interior of C1.

By the Cauchy Residue Formula, we therefore have∫ 2π

0

dθ

13− 5 cos θ
dθ =

2i

5
(2πi)Res

(
1

(z − 5)(z − 1
5 )
, 0

)

= −4

5
π lim
z→1/5

1

z − 5

= − 4π

5( 1
5 − 5

)

=
π

6
.

The next example does not involve residues.

6. Suppose f is an entire function and there are positive real numbers R0 and M
such that |f(z)| ≤ M |z|n for all z with |z| > R0. Show that f is a polynomial
of degree at most n.

Solution: By the Cauchy estimates (see (2.1.1) of Lecture 16, or Theorem 20 on
page 215 of the textbook), we have for all k > 0,

|f (n+k)(0)| ≤ n!MRn

Rn+k
=
n!M

Rk
.

Since k > 0, the quantity on the right approaches 0 as R→∞. Thus |f (n+k)(0)| = 0
for k > 0, f (m)(0) = 0 for all m > n. It follows that the Maclaurin’s series for f is

f(z) =

n∑
m=0

f (m)(0)zm,

which means f is a polynomial of degree less than or equal to n (the degree equals
n if f (n)(0) 6= 0).

5


	1. Residues
	1.1. Isolated singularities and residues
	1.2. Examples


