LECTURE 21

Date of Lecture: April 5, 2022

For r > 0 and a € C, B,(a) will denote the open disc of radius r centred at a,
and Cy(a) the bounding circle of B;,(a). In case r = 0, we simplify the notation
and write B, and C,. for B,.(a) and C,(a).

1. Examples
1
(Bz—1)(z+2)
(a) Find the Laurent expansion of f(z) centred at 0 for |z| large. What is the
region of convergence?
(b) Find the Laurent expansion of f(z), centred at 0 , in an annular region
containing |z| = 1. What is the region of convergence?
(c) Find the Maclaurin series for f(z). What is the region of convergence?

1. Let f(2) =

Solution: We will repeatedly use the fact that
1 =
The partial fraction decomposition of f(z) is
1 3 1
f(z)_7<3z—1 N z+2>'
Let us compute the Maclaurin and the Laurent series for each of the two partial

fractions above. Let us first do the computations for 3/(3z — 1). If |z| > 1/3, then
|1/3z] < 1 and hence by setting w = 1/3z in (#) we get 3

3 _ —
3z—1 = 3z(1—(1/3z)) —
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Thus
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On the other hand, if |z| < 1/3, then |3z] < 1, and therefore, setting w = 3z in (#)
we get 525 = — %= = =337 ((32)". Thus

(%) 32 — = 23”“ n if |2 < 1/3.

Next let us do our computations for the 1/( +2). If |z| > 2, then |2/z| <1,
and hence, by setting w = 2/z in (#) we get =1 z/g) = 1 Y onso z%’) =

z+2
oo —2)"
Ym0 (Z,L—Jr)l In other words

X o9\yn—1
(t) ! :Z<2) . if [z > 2.




If |2] < 2, then |2/2| < 1, and so applying (#) to w = z/2 we get 5 = 5 7373y =

3% J(=1)"Z:. It follows that

(1) z+2:7§2"+1Z7 if |z| < 2.

(a) If |z| > 2, then (%) and (1) are valid and so, using the partial fraction decom-
position f(z) = (325 - ziZ) we have

n=1

The region of convergence for the above Laurent expansion is
D={zeC||z| >2}.

(b) The point z = 1 is a point where the series (xx) and (1) converge. The common
region of convergence of (xx) and (1) is A={z€C|1/3<|z] <2}. On A

we have
_ 1 . 2n71 —-n 1 Oo3n+1n
f(z)——? (=2)""= —72 z
n=1 n=0

The region of convergence of the above Laurent series is the annular region A.
(c) For the Maclaurin series for f(z) to converge on a disc B, both summands

of the partial fraction decomposition have to be analytic on B,.. The largest

disc on which this happens when in the disc B; /3. Here () and (}) are valid.

Hence on By,3 we have

-1y (_3n+l B (;):)Zn_

n=0

As mentioned above, the region of convergence is the open disc By 3.

27 do
2. Evaluate / —— where0<a < 1.
o l+acosf

Solution: For such problems, note that on the unit circle Cq, centred at 0, we can
write z = ¢, and in this case

1 . 1
c059:§(z+1/z) 81119—%(2—1/2').

Moreover, again with z = ¢?, we have 2/(0) = ie? = i2(0). It follows that if we
have an integral of the form fOQTr f(cos,sin0)df, then
27 f(z+1/z 2—1/2>@

f(cosB,sinf)dd = % 5 5% "

0 C1

In particlular,

/2“ do 7}{ 1 @7%{ dz
o l+4acosh 011—1—%(,2—}—1)2'27@' c, a2 +2z+a

f(z) =

Set

i az2+2z+ta
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The integrand has poles at the zeros of az? + 2z + a, and the quadratic formula

tells us that these occur at z; = —% — 7”;“2 and zp = —% + 7”;“2 An easy
computation shows that 2125 = -5 — 1;52 = 1. Since z1 = —1—(v1 — a?/a), clearly

z1 is a real number less that —1 therefore |z1| > 1. It follows that |z2] = 1/]2z1] < 1.
Thus f(z) has only one isolated singularity in the interior of C, and that is a simple

pole at zs.
Let )
9(2) = W)
Then ) ()
g(z
fz)=~- .
i z— 2

From the Cauchy Integral Formula we get
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3. Evaluat dx.
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Solution: Let R be a positive real number. Let S be the semicircle of radius R
centred at 0, consisting of all points z € C such that |z| = R and and Im(z) > 0.
Orient Sk in the counterclockwise direction. Let I'p = Sgp+[—R, R], where [—R, R]
is the directed line segment on the real axis from —R to R. Let
1
S Rl e s g YT P
The trick is to show that limp_ o fSR f(2)dz = 0. Then

/Z f(z)dz = lim f(2)dz = lim /FR f(2)dz — lim /SR f(z)dz

R—o0 [-R,R] R—o0 R—o0

= lim f(z)dz,
R—o0 g
and the last integral can be computed using contour integrals.
Now, factoring the denominator in the expression for f(z), we see that

1 1
z) = = .
/) (224+2242)(22+1) (—-)E+i)z+1-9)(E+1+1)
Clearly f(z) has simple poles at z = +i and z = —1 4. If R is large (R > v/2 will
do), only two of these, namely z = ¢ and z = —1 + 7 lie in the interior of I'r. The
other two lie outside I'g. We have a partial fraction decomposition

£(2) A n B n C n D

z) = .

z—1 z4+1 z4+1—1 z+1+41
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. B D . . . . I
Since 77 and 7577 are analytic on and in the interior of I', their integrals over

I'g is zero by the Cauchy Integral formula. Thus

(z)dz:/ A ,dz+/ L,dz:Zm'(A+C’).
Tn rp 2 —1 rp2t1l—i

We have to find A and C'. Standard method for partial fractions tell us that

. . . 1 1
A= lim(z —4)f(z) = lim GGti)(z+1l—di)z+1+i) (20)(1+20)
and
C= lim (z41-49)f(z)= lim - 1 ~ = = ! -
z——14i ro—1ti (z—)(z+0)(z+1+1)  (20)(1 — 21)
Therefore

1 1 1 2
dz = (2mi) L G
L f#)dz (m)2i{1+2i+1—2i} 5
We have to show that limg_, fSR f(2)dz = 0. On the semicircle Sg, z = Re®, for
some 6 € [0, 7], and hence

2 2 2(2i0 i 220 ‘
lim (22 +22+2)(2* +1) ~ lim R?e*" + 2Re + 2)(R%e*’ + 1) _ i

R—o00 R4 R—o0 R4
Since |e*?| = 1, it follows that for large R, \(224'22;3#\ >
|f(2)| < $:. Hence, for large R,

%. Thus for large R,

‘ .. f(z)dz) < %K(SR) = % — 0 as R — oo.
Thus limp_ o0 fSR f(2)dz = 0. Now
R
/ f(z)dz = f(z)dz — f(z)dz = o f(z)dz.
-R Tr Sk 5 Sr

Letting R — oo and using the fact that limg_, *[SR f(2)dz =0, we get
o0 2
/ f@)dx = ?ﬂ-
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