LECTURE 21

Date of Lecture: April 5, 2022
For $r>0$ and $a \in \mathbb{C}, B_{r}(a)$ will denote the open disc of radius r centred at a, and $C_{r}(a)$ the bounding circle of $B_{r}(a)$. In case $r=0$, we simplify the notation and write B_{r} and C_{r} for $B_{r}(a)$ and $C_{r}(a)$.

1. Examples

1. Let $f(z)=\frac{1}{(3 z-1)(z+2)}$.
(a) Find the Laurent expansion of $f(z)$ centred at 0 for $|z|$ large. What is the region of convergence?
(b) Find the Laurent expansion of $f(z)$, centred at 0 , in an annular region containing $|z|=1$. What is the region of convergence?
(c) Find the Maclaurin series for $f(z)$. What is the region of convergence?

Solution: We will repeatedly use the fact that

$$
\frac{1}{1-w}=\sum_{n=0}^{\infty} w^{n} \quad \text { if }|w|<1
$$

The partial fraction decomposition of $f(z)$ is

$$
f(z)=\frac{1}{7}\left(\frac{3}{3 z-1}-\frac{1}{z+2}\right)
$$

Let us compute the Maclaurin and the Laurent series for each of the two partial fractions above. Let us first do the computations for $3 /(3 z-1)$. If $|z|>1 / 3$, then $|1 / 3 z|<1$ and hence, by setting $w=1 / 3 z$ in (\#) we get $\frac{3}{3 z-1}=\frac{3}{3 z(1-(1 / 3 z))}=$ $\frac{1}{z} \cdot \frac{1}{1-(3 / z)}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{3^{n}}{z^{n}}=\sum_{n=0}^{\infty} \frac{3^{n}}{z^{n+1}}$.

Thus

$$
\begin{equation*}
\frac{3}{3 z-1}=\sum_{n=1}^{\infty} \frac{3^{n-1}}{z^{n}}, \quad \text { if }|z|>1 / 3 \tag{*}
\end{equation*}
$$

On the other hand, if $|z|<1 / 3$, then $|3 z|<1$, and therefore, setting $w=3 z$ in (\#) we get $\frac{3}{3 z-1}=-\frac{3}{1-3 z}=-3 \sum_{n=0}^{\infty}(3 z)^{n}$. Thus

$$
\begin{equation*}
\frac{3}{3 z-1}=-\sum_{n=0}^{\infty} 3^{n+1} z^{n}, \quad \text { if }|z|<1 / 3 \tag{**}
\end{equation*}
$$

Next let us do our computations for the $1 /(z+2)$. If $|z|>2$, then $|2 / z|<1$, and hence, by setting $w=2 / z$ in (\#) we get $\frac{1}{z+2}=\frac{1}{z} \cdot \frac{1}{1-(-z / 2)}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n}}=$ $\sum_{n=0}^{\infty} \frac{(-2)^{n}}{z^{n+1}}$. In other words

$$
\frac{1}{z+2}=\sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{z^{n}}, \quad \text { if }|z|>2
$$

If $|z|<2$, then $|z / 2|<1$, and so applying (\#) to $w=z / 2$ we get $\frac{1}{z+2}=\frac{1}{2} \cdot \frac{1}{1-(-z / 2)}=$ $\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{2^{n}}$. It follows that

$$
\frac{1}{z+2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}} z^{n}, \quad \text { if }|z|<2
$$

(a) If $|z|>2$, then $(*)$ and (\dagger) are valid and so, using the partial fraction decomposition $f(z)=\frac{1}{7}\left(\frac{3}{3 z-1}-\frac{1}{z+2}\right)$ we have

$$
f(z)=\sum_{n=1}^{\infty}\left(\frac{3^{n-1}-(-2)^{n-1}}{7}\right) \frac{1}{z^{n}}
$$

The region of convergence for the above Laurent expansion is

$$
D=\{z \in \mathbb{C}| | z \mid>2\}
$$

(b) The point $z=1$ is a point where the series $(* *)$ and (\dagger) converge. The common region of convergence of $(* *)$ and (\dagger) is $A=\{z \in \mathbb{C}|1 / 3<|z|<2\}$. On A we have

$$
f(z)=-\frac{1}{7} \sum_{n=1}^{\infty}(-2)^{n-1} z^{-n}-\frac{1}{7} \sum_{n=0}^{\infty} 3^{n+1} z^{n}
$$

The region of convergence of the above Laurent series is the annular region A.
(c) For the Maclaurin series for $f(z)$ to converge on a disc B_{r}, both summands of the partial fraction decomposition have to be analytic on B_{r}. The largest disc on which this happens when in the disc $B_{1 / 3}$. Here $(* *)$ and (\ddagger) are valid. Hence on $B_{1 / 3}$ we have

$$
f(z)=\frac{1}{7} \sum_{n=0}^{\infty}\left(-3^{n+1}-\frac{(-1)^{n}}{2^{n+1}}\right) z^{n}
$$

As mentioned above, the region of convergence is the open disc $B_{1 / 3}$.
2. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}$ where $0 \leq a<1$.

Solution: For such problems, note that on the unit circle C_{1}, centred at 0 , we can write $z=e^{i \theta}$, and in this case

$$
\cos \theta=\frac{1}{2}(z+1 / z) \quad \sin \theta=\frac{1}{2 i}(z-1 / z)
$$

Moreover, again with $z=e^{i \theta}$, we have $z^{\prime}(\theta)=i e^{i \theta}=i z(\theta)$. It follows that if we have an integral of the form $\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta$, then

$$
\int_{0}^{2 \pi} f(\cos \theta, \sin \theta) d \theta=\oint_{C_{1}} f\left(\frac{z+1 / z}{2}, \frac{z-1 / z}{2 i}\right) \frac{d z}{i z}
$$

In particlular,

$$
\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}=\oint_{C_{1}} \frac{1}{1+\frac{a}{2}\left(z+\frac{1}{z}\right)} \frac{d z}{i z}=\frac{2}{i} \oint_{C_{1}} \frac{d z}{a z^{2}+2 z+a}
$$

Set

$$
f(z)=\frac{2}{i} \cdot \frac{1}{a z^{2}+2 z+a}
$$

The integrand has poles at the zeros of $a z^{2}+2 z+a$, and the quadratic formula tells us that these occur at $z_{1}=-\frac{1}{a}-\frac{\sqrt{1-a^{2}}}{a}$ and $z_{2}=-\frac{1}{a}+\frac{\sqrt{1-a^{2}}}{a}$. An easy computation shows that $z_{1} z_{2}=\frac{1}{a^{2}}-\frac{1-a^{2}}{a^{2}}=1$. Since $z_{1}=-1-\left(\sqrt{1-a^{2}} / a\right)$, clearly z_{1} is a real number less that -1 therefore $\left|z_{1}\right|>1$. It follows that $\left|z_{2}\right|=1 /\left|z_{1}\right|<1$. Thus $f(z)$ has only one isolated singularity in the interior of C_{1}, and that is a simple pole at z_{2}.

Let

$$
g(z)=\frac{1}{a\left(z-z_{1}\right)} .
$$

Then

$$
f(z)=\frac{2}{i} \cdot \frac{g(z)}{z-z_{2}}
$$

From the Cauchy Integral Formula we get

$$
\begin{aligned}
\int_{0}^{2 \pi} \frac{d \theta}{1+a \cos \theta}=\oint_{C_{1}} f(z) d z & =\frac{2(2 \pi i)}{i} g\left(z_{2}\right) \\
& =4 \pi \frac{1}{a\left(z_{2}-z_{1}\right)} \\
& =4 \pi \frac{a}{a\left(2 \sqrt{1-a^{2}}\right)} \\
& =\frac{2 \pi}{\sqrt{1-a^{2}}}
\end{aligned}
$$

3. Evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+2 x+2\right)\left(x^{2}+1\right)} d x$.

Solution: Let R be a positive real number. Let S_{R} be the semicircle of radius R centred at 0 , consisting of all points $z \in \mathbb{C}$ such that $|z|=R$ and and $\operatorname{Im}(z) \geq 0$. Orient S_{R} in the counterclockwise direction. Let $\Gamma_{R}=S_{R}+[-R, R]$, where $[-R, R]$ is the directed line segment on the real axis from $-R$ to R. Let

$$
f(z)=\frac{1}{\left(z^{2}+2 z+2\right)\left(z^{2}+1\right)}
$$

The trick is to show that $\lim _{R \rightarrow \infty} \int_{S_{R}} f(z) d z=0$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{[-R, R]} f(z) d z & =\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} f(z) d z-\lim _{R \rightarrow \infty} \int_{S_{R}} f(z) d z \\
& =\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} f(z) d z
\end{aligned}
$$

and the last integral can be computed using contour integrals.
Now, factoring the denominator in the expression for $f(z)$, we see that

$$
f(z)=\frac{1}{\left(z^{2}+2 z+2\right)\left(z^{2}+1\right)}=\frac{1}{(z-i)(z+i)(z+1-i)(z+1+i)}
$$

Clearly $f(z)$ has simple poles at $z= \pm i$ and $z=-1 \pm i$. If R is large ($R>\sqrt{2}$ will do), only two of these, namely $z=i$ and $z=-1+i$ lie in the interior of Γ_{R}. The other two lie outside Γ_{R}. We have a partial fraction decomposition

$$
f(z)=\frac{A}{z-i}+\frac{B}{z+i}+\frac{C}{z+1-i}+\frac{D}{z+1+i}
$$

Since $\frac{B}{z+i}$ and $\frac{D}{z+1+i}$ are analytic on and in the interior of Γ_{R}, their integrals over Γ_{R} is zero by the Cauchy Integral formula. Thus

$$
\int_{\Gamma_{R}} f(z) d z=\int_{\Gamma_{R}} \frac{A}{z-i} d z+\int_{\Gamma_{R}} \frac{C}{z+1-i} d z=2 \pi i(A+C)
$$

We have to find A and C. Standard method for partial fractions tell us that

$$
A=\lim _{z \rightarrow i}(z-i) f(z)=\lim _{z \rightarrow i} \frac{1}{(z+i)(z+1-i)(z+1+i)}=\frac{1}{(2 i)(1+2 i)}
$$

and

$$
C=\lim _{z \rightarrow-1+i}(z+1-i) f(z)=\lim _{z \rightarrow-1+i} \frac{1}{(z-i)(z+i)(z+1+i)}=\frac{1}{(2 i)(1-2 i)}
$$

Therefore

$$
\int_{\Gamma_{R}} f(z) d z=(2 \pi i) \frac{1}{2 i}\left\{\frac{1}{1+2 i}+\frac{1}{1-2 i}\right\}=\frac{2 \pi}{5}
$$

We have to show that $\lim _{R \rightarrow \infty} \int_{S_{R}} f(z) d z=0$. On the semicircle $S_{R}, z=R e^{i \theta}$, for some $\theta \in[0, \pi]$, and hence

$$
\lim _{R \rightarrow \infty} \frac{\left(z^{2}+2 z+2\right)\left(z^{2}+1\right)}{R^{4}}=\lim _{R \rightarrow \infty} \frac{\left.R^{2} e^{(2 i \theta}+2 R e^{i \theta}+2\right)\left(R^{2} e^{2 i \theta}+1\right)}{R^{4}}=e^{4 i \theta}
$$

Since $\left|e^{4 i \theta}\right|=1$, it follows that for large $R,\left|\frac{\left(z^{2}+2 z+2\right)\left(z^{2}+1\right)}{R^{4}}\right| \geq \frac{1}{2}$. Thus for large R, $|f(z)| \leq \frac{2}{R^{4}}$. Hence, for large R,

$$
\left|\int_{S_{R}} f(z) d z\right| \leq \frac{2}{R^{4}} \ell\left(S_{R}\right)=\frac{2 \pi}{R^{3}} \longrightarrow 0 \quad \text { as } R \longrightarrow \infty
$$

Thus $\lim _{R \rightarrow \infty} \int_{S_{R}} f(z) d z=0$. Now

$$
\int_{-R}^{R} f(x) d x=\int_{\Gamma_{R}} f(z) d z-\int_{S_{R}} f(z) d z=\frac{2 \pi}{5}-\int_{S_{R}} f(z) d z
$$

Letting $R \rightarrow \infty$ and using the fact that $\lim _{R \rightarrow \infty} \int_{S_{R}} f(z) d z=0$, we get

$$
\int_{-\infty}^{\infty} f(x) d x=\frac{2 \pi}{5}
$$

