LECTURE 21

Date of Lecture: April 5, 2022

For r > 0 and $a \in \mathbb{C}$, $B_r(a)$ will denote the open disc of radius r centred at a, and $C_r(a)$ the bounding circle of $B_r(a)$. In case r = 0, we simplify the notation and write B_r and C_r for $B_r(a)$ and $C_r(a)$.

1. Examples

- **1**. Let $f(z) = \frac{1}{(3z-1)(z+2)}$.
 - (a) Find the Laurent expansion of f(z) centred at 0 for |z| large. What is the region of convergence?
 - (b) Find the Laurent expansion of f(z), centred at 0, in an annular region containing |z| = 1. What is the region of convergence?
 - (c) Find the Maclaurin series for f(z). What is the region of convergence?

Solution: We will repeatedly use the fact that

(#)
$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n$$
 if $|w| < 1$.

The partial fraction decomposition of f(z) is

$$f(z) = \frac{1}{7} \left(\frac{3}{3z - 1} - \frac{1}{z + 2} \right).$$

Let us compute the Maclaurin and the Laurent series for each of the two partial fractions above. Let us first do the computations for 3/(3z-1). If |z| > 1/3, then |1/3z| < 1 and hence, by setting w = 1/3z in (#) we get $\frac{3}{3z-1} = \frac{3}{3z(1-(1/3z))} = \frac{1}{z} \cdot \frac{1}{1-(3/z)} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{3^n}{z^n} = \sum_{n=0}^{\infty} \frac{3^n}{z^{n+1}}$. Thus

(*)
$$\frac{3}{3z-1} = \sum_{n=1}^{\infty} \frac{3^{n-1}}{z^n}, \quad \text{if } |z| > 1/3.$$

On the other hand, if |z| < 1/3, then |3z| < 1, and therefore, setting w = 3z in (#) we get $\frac{3}{3z-1} = -\frac{3}{1-3z} = -3\sum_{n=0}^{\infty} (3z)^n$. Thus

(**)
$$\frac{3}{3z-1} = -\sum_{n=0}^{\infty} 3^{n+1} z^n, \quad \text{if } |z| < 1/3.$$

Next let us do our computations for the 1/(z+2). If |z| > 2, then |2/z| < 1, and hence, by setting w = 2/z in (#) we get $\frac{1}{z+2} = \frac{1}{z} \cdot \frac{1}{1-(-z/2)} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-2)^n}{z^n} = \sum_{n=0}^{\infty} \frac{(-2)^n}{z^{n+1}}$. In other words

(†)
$$\frac{1}{z+2} = \sum_{n=1}^{\infty} \frac{(-2)^{n-1}}{z^n}, \quad \text{if } |z| > 2.$$

If |z| < 2, then |z/2| < 1, and so applying (#) to w = z/2 we get $\frac{1}{z+2} = \frac{1}{2} \cdot \frac{1}{1-(-z/2)} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{2^n}$. It follows that

(‡)
$$\frac{1}{z+2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} z^n, \quad \text{if } |z| < 2.$$

(a) If |z| > 2, then (*) and (†) are valid and so, using the partial fraction decomposition $f(z) = \frac{1}{7} \left(\frac{3}{3z-1} - \frac{1}{z+2} \right)$ we have

$$f(z) = \sum_{n=1}^{\infty} \left(\frac{3^{n-1} - (-2)^{n-1}}{7} \right) \frac{1}{z^n}.$$

The region of convergence for the above Laurent expansion is

$$D=\{z\in\mathbb{C}\mid |z|>2\}$$

(b) The point z = 1 is a point where the series (**) and (†) converge. The common region of convergence of (**) and (†) is $A = \{z \in \mathbb{C} \mid 1/3 < |z| < 2\}$. On A we have

$$f(z) = -\frac{1}{7} \sum_{n=1}^{\infty} (-2)^{n-1} z^{-n} - \frac{1}{7} \sum_{n=0}^{\infty} 3^{n+1} z^n$$

The region of convergence of the above Laurent series is the annular region A.

(c) For the Maclaurin series for f(z) to converge on a disc B_r , both summands of the partial fraction decomposition have to be analytic on B_r . The largest disc on which this happens when in the disc $B_{1/3}$. Here (**) and (‡) are valid. Hence on $B_{1/3}$ we have

$$f(z) = \frac{1}{7} \sum_{n=0}^{\infty} \left(-3^{n+1} - \frac{(-1)^n}{2^{n+1}} \right) z^n.$$

As mentioned above, the region of convergence is the open disc $B_{1/3}$.

2. Evaluate
$$\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta}$$
 where $0 \le a < 1$.

Solution: For such problems, note that on the unit circle C_1 , centred at 0, we can write $z = e^{i\theta}$, and in this case

$$\cos \theta = \frac{1}{2}(z+1/z)$$
 $\sin \theta = \frac{1}{2i}(z-1/z).$

Moreover, again with $z = e^{i\theta}$, we have $z'(\theta) = ie^{i\theta} = iz(\theta)$. It follows that if we have an integral of the form $\int_0^{2\pi} f(\cos\theta, \sin\theta)d\theta$, then

$$\int_0^{2\pi} f(\cos\theta, \sin\theta) d\theta = \oint_{C_1} f\left(\frac{z+1/z}{2}, \frac{z-1/z}{2i}\right) \frac{dz}{iz}$$

In particlular,

Set

$$\int_{0}^{2\pi} \frac{d\theta}{1+a\cos\theta} = \oint_{C_1} \frac{1}{1+\frac{a}{2}(z+\frac{1}{z})} \frac{dz}{iz} = \frac{2}{i} \oint_{C_1} \frac{dz}{az^2+2z+a}$$
$$f(z) = \frac{2}{2} \cdot \frac{1}{z} \cdot$$

 $f(z) = \frac{1}{i} \cdot \frac{1}{\frac{az^2 + 2z + a}{2}}$

The integrand has poles at the zeros of $az^2 + 2z + a$, and the quadratic formula tells us that these occur at $z_1 = -\frac{1}{a} - \frac{\sqrt{1-a^2}}{a}$ and $z_2 = -\frac{1}{a} + \frac{\sqrt{1-a^2}}{a}$. An easy computation shows that $z_1z_2 = \frac{1}{a^2} - \frac{1-a^2}{a^2} = 1$. Since $z_1 = -1 - (\sqrt{1-a^2}/a)$, clearly z_1 is a real number less that -1 therefore $|z_1| > 1$. It follows that $|z_2| = 1/|z_1| < 1$. Thus f(z) has only one isolated singularity in the interior of C_1 , and that is a simple pole at z_2 .

Let

$$g(z) = \frac{1}{a(z-z_1)}$$

Then

$$f(z) = \frac{2}{i} \cdot \frac{g(z)}{z - z_2}$$

From the Cauchy Integral Formula we get

$$\int_{0}^{2\pi} \frac{d\theta}{1 + a\cos\theta} = \oint_{C_1} f(z)dz = \frac{2(2\pi i)}{i}g(z_2)$$
$$= 4\pi \frac{1}{a(z_2 - z_1)}$$
$$= 4\pi \frac{a}{a(2\sqrt{1 - a^2})}$$
$$= \frac{2\pi}{\sqrt{1 - a^2}}.$$

3. Evaluate $\int_{-\infty}^{\infty} \frac{1}{(x^2 + 2x + 2)(x^2 + 1)} dx.$

Solution: Let R be a positive real number. Let S_R be the semicircle of radius R centred at 0, consisting of all points $z \in \mathbb{C}$ such that |z| = R and and $\operatorname{Im}(z) \geq 0$. Orient S_R in the counterclockwise direction. Let $\Gamma_R = S_R + [-R, R]$, where [-R, R] is the directed line segment on the real axis from -R to R. Let

$$f(z) = \frac{1}{(z^2 + 2z + 2)(z^2 + 1)}$$

The trick is to show that $\lim_{R\to\infty} \int_{S_R} f(z) dz = 0$. Then

$$\begin{split} \int_{-\infty}^{\infty} f(x)dx &= \lim_{R \to \infty} \int_{[-R,R]} f(z)dz = \lim_{R \to \infty} \int_{\Gamma_R} f(z)dz - \lim_{R \to \infty} \int_{S_R} f(z)dz \\ &= \lim_{R \to \infty} \int_{\Gamma_R} f(z)dz, \end{split}$$

and the last integral can be computed using contour integrals.

Now, factoring the denominator in the expression for f(z), we see that

$$f(z) = \frac{1}{(z^2 + 2z + 2)(z^2 + 1)} = \frac{1}{(z - i)(z + i)(z + 1 - i)(z + 1 + i)}$$

Clearly f(z) has simple poles at $z = \pm i$ and $z = -1 \pm i$. If R is large $(R > \sqrt{2}$ will do), only two of these, namely z = i and z = -1 + i lie in the interior of Γ_R . The other two lie outside Γ_R . We have a partial fraction decomposition

$$f(z) = \frac{A}{z-i} + \frac{B}{z+i} + \frac{C}{z+1-i} + \frac{D}{z+1+i}.$$

Since $\frac{B}{z+i}$ and $\frac{D}{z+1+i}$ are analytic on and in the interior of Γ_R , their integrals over Γ_R is zero by the Cauchy Integral formula. Thus

$$\int_{\Gamma_R} f(z)dz = \int_{\Gamma_R} \frac{A}{z-i}dz + \int_{\Gamma_R} \frac{C}{z+1-i}dz = 2\pi i(A+C).$$

We have to find A and C. Standard method for partial fractions tell us that

$$A = \lim_{z \to i} (z - i)f(z) = \lim_{z \to i} \frac{1}{(z + i)(z + 1 - i)(z + 1 + i)} = \frac{1}{(2i)(1 + 2i)}$$

and

$$C = \lim_{z \to -1+i} (z+1-i)f(z) = \lim_{z \to -1+i} \frac{1}{(z-i)(z+i)(z+1+i)} = \frac{1}{(2i)(1-2i)}$$

Therefore

$$\int_{\Gamma_R} f(z)dz = (2\pi i)\frac{1}{2i} \left\{ \frac{1}{1+2i} + \frac{1}{1-2i} \right\} = \frac{2\pi}{5}$$

We have to show that $\lim_{R\to\infty} \int_{S_R} f(z) dz = 0$. On the semicircle S_R , $z = Re^{i\theta}$, for some $\theta \in [0, \pi]$, and hence

$$\lim_{R \to \infty} \frac{(z^2 + 2z + 2)(z^2 + 1)}{R^4} = \lim_{R \to \infty} \frac{R^2 e^{(2i\theta} + 2Re^{i\theta} + 2)(R^2 e^{2i\theta} + 1)}{R^4} = e^{4i\theta}.$$

Since $|e^{4i\theta}| = 1$, it follows that for large R, $|\frac{(z^2+2z+2)(z^2+1)}{R^4}| \ge \frac{1}{2}$. Thus for large R, $|f(z)| \le \frac{2}{R^4}$. Hence, for large R,

$$\left| \int_{S_R} f(z) dz \right| \le \frac{2}{R^4} \ell(S_R) = \frac{2\pi}{R^3} \longrightarrow 0 \quad \text{as } R \longrightarrow \infty.$$

Thus $\lim_{R\to\infty} \int_{S_R} f(z) dz = 0$. Now

$$\int_{-R}^{R} f(x)dx = \int_{\Gamma_{R}} f(z)dz - \int_{S_{R}} f(z)dz = \frac{2\pi}{5} - \int_{S_{R}} f(z)dz$$

Letting $R \to \infty$ and using the fact that $\lim_{R\to\infty} \int_{S_R} f(z) dz = 0$, we get

$$\int_{-\infty}^{\infty} f(x)dx = \frac{2\pi}{5}.$$