
LECTURE 21

Date of Lecture: April 5, 2022

For r > 0 and a ∈ C, Br(a) will denote the open disc of radius r centred at a,
and Cr(a) the bounding circle of Br(a). In case r = 0, we simplify the notation
and write Br and Cr for Br(a) and Cr(a).

1. Examples

1. Let f(z) =
1

(3z − 1)(z + 2)
.

(a) Find the Laurent expansion of f(z) centred at 0 for |z| large. What is the
region of convergence?

(b) Find the Laurent expansion of f(z), centred at 0 , in an annular region
containing |z| = 1. What is the region of convergence?

(c) Find the Maclaurin series for f(z). What is the region of convergence?

Solution: We will repeatedly use the fact that

(#)
1

1− w
=

∞∑
n=0

wn if |w| < 1.

The partial fraction decomposition of f(z) is

f(z) =
1

7

(
3

3z − 1
− 1

z + 2

)
.

Let us compute the Maclaurin and the Laurent series for each of the two partial
fractions above. Let us first do the computations for 3/(3z − 1). If |z| > 1/3, then
|1/3z| < 1 and hence, by setting w = 1/3z in (#) we get 3

3z−1 = 3
3z(1−(1/3z)) =

1
z ·

1
1−(3/z) = 1

z

∑∞
n=0

3n

zn =
∑∞
n=0

3n

zn+1 .

Thus

(∗) 3

3z − 1
=

∞∑
n=1

3n−1

zn
, if |z| > 1/3.

On the other hand, if |z| < 1/3, then |3z| < 1, and therefore, setting w = 3z in (#)
we get 3

3z−1 = − 3
1−3z = −3

∑∞
n=0(3z)n. Thus

(∗∗) 3

3z − 1
= −

∞∑
n=0

3n+1zn, if |z| < 1/3.

Next let us do our computations for the 1/(z + 2). If |z| > 2, then |2/z| < 1,

and hence, by setting w = 2/z in (#) we get 1
z+2 = 1

z ·
1

1−(−z/2) = 1
z

∑∞
n=0

(−2)n

zn =∑∞
n=0

(−2)n

zn+1 . In other words

(†) 1

z + 2
=

∞∑
n=1

(−2)n−1

zn
, if |z| > 2.
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If |z| < 2, then |z/2| < 1, and so applying (#) to w = z/2 we get 1
z+2 = 1

2 ·
1

1−(−z/2) =
1
2

∑∞
n=0(−1)n z

n

2n . It follows that

(‡) 1

z + 2
=

∞∑
n=0

(−1)n

2n+1
zn, if |z| < 2.

(a) If |z| > 2, then (∗) and (†) are valid and so, using the partial fraction decom-
position f(z) = 1

7( 3
3z−1 −

1
z+2) we have

f(z) =

∞∑
n=1

(
3n−1 − (−2)n−1

7

)
1

zn
.

The region of convergence for the above Laurent expansion is

D = {z ∈ C | |z| > 2}.
(b) The point z = 1 is a point where the series (∗∗) and (†) converge. The common

region of convergence of (∗∗) and (†) is A = {z ∈ C | 1/3 < |z| < 2}. On A
we have

f(z) = −1

7

∞∑
n=1

(−2)n−1z−n − 1

7

∞∑
n=0

3n+1zn

The region of convergence of the above Laurent series is the annular region A.
(c) For the Maclaurin series for f(z) to converge on a disc Br, both summands

of the partial fraction decomposition have to be analytic on Br. The largest
disc on which this happens when in the disc B1/3. Here (∗∗) and (‡) are valid.
Hence on B1/3 we have

f(z) =
1

7

∞∑
n=0

(
−3n+1 − (−1)n

2n+1

)
zn.

As mentioned above, the region of convergence is the open disc B1/3.

2. Evaluate

∫ 2π

0

dθ

1 + a cos θ
where 0 ≤ a < 1.

Solution: For such problems, note that on the unit circle C1, centred at 0, we can
write z = eiθ, and in this case

cos θ =
1

2
(z + 1/z) sin θ =

1

2i
(z − 1/z).

Moreover, again with z = eiθ, we have z′(θ) = ieiθ = iz(θ). It follows that if we

have an integral of the form
∫ 2π

0
f(cos θ, sin θ)dθ, then∫ 2π

0

f(cos θ, sin θ)dθ =

∮
C1

f
(z + 1/z

2
,
z − 1/z

2i

)dz
iz
.

In particlular,∫ 2π

0

dθ

1 + a cos θ
=

∮
C1

1

1 + a
2 (z + 1

z )

dz

iz
=

2

i

∮
C1

dz

az2 + 2z + a

Set

f(z) =
2

i
· 1

az2 + 2z + a
.
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The integrand has poles at the zeros of az2 + 2z + a, and the quadratic formula

tells us that these occur at z1 = − 1
a −

√
1−a2
a and z2 = − 1

a +
√

1−a2
a . An easy

computation shows that z1z2 = 1
a2−

1−a2
a2 = 1. Since z1 = −1−(

√
1− a2/a), clearly

z1 is a real number less that −1 therefore |z1| > 1. It follows that |z2| = 1/|z1| < 1.
Thus f(z) has only one isolated singularity in the interior of C1, and that is a simple
pole at z2.

Let

g(z) =
1

a(z − z1)
.

Then

f(z) =
2

i
· g(z)

z − z2
.

From the Cauchy Integral Formula we get∫ 2π

0

dθ

1 + a cos θ
=

∮
C1

f(z)dz =
2(2πi)

i
g(z2)

= 4π
1

a(z2 − z1)

= 4π
a

a(2
√

1− a2)

=
2π√

1− a2
.

3. Evaluate

∫ ∞
−∞

1

(x2 + 2x+ 2)(x2 + 1)
dx.

Solution: Let R be a positive real number. Let SR be the semicircle of radius R
centred at 0, consisting of all points z ∈ C such that |z| = R and and Im(z) ≥ 0.
Orient SR in the counterclockwise direction. Let ΓR = SR+[−R,R], where [−R,R]
is the directed line segment on the real axis from −R to R. Let

f(z) =
1

(z2 + 2z + 2)(z2 + 1)
.

The trick is to show that limR→∞
∫
SR
f(z)dz = 0. Then∫ ∞

−∞
f(x)dx = lim

R→∞

∫
[−R,R]

f(z)dz = lim
R→∞

∫
ΓR

f(z)dz − lim
R→∞

∫
SR

f(z)dz

= lim
R→∞

∫
ΓR

f(z)dz,

and the last integral can be computed using contour integrals.
Now, factoring the denominator in the expression for f(z), we see that

f(z) =
1

(z2 + 2z + 2)(z2 + 1)
=

1

(z − i)(z + i)(z + 1− i)(z + 1 + i)
.

Clearly f(z) has simple poles at z = ±i and z = −1± i. If R is large (R >
√

2 will
do), only two of these, namely z = i and z = −1 + i lie in the interior of ΓR. The
other two lie outside ΓR. We have a partial fraction decomposition

f(z) =
A

z − i
+

B

z + i
+

C

z + 1− i
+

D

z + 1 + i
.
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Since B
z+i and D

z+1+i are analytic on and in the interior of ΓR, their integrals over
ΓR is zero by the Cauchy Integral formula. Thus∫

ΓR

f(z)dz =

∫
ΓR

A

z − i
dz +

∫
ΓR

C

z + 1− i
dz = 2πi(A+ C).

We have to find A and C. Standard method for partial fractions tell us that

A = lim
z→i

(z − i)f(z) = lim
z→i

1

(z + i)(z + 1− i)(z + 1 + i)
=

1

(2i)(1 + 2i)

and

C = lim
z→−1+i

(z + 1− i)f(z) = lim
z→−1+i

1

(z − i)(z + i)(z + 1 + i)
=

1

(2i)(1− 2i)

Therefore ∫
ΓR

f(z)dz = (2πi)
1

2i

{
1

1 + 2i
+

1

1− 2i

}
=

2π

5
.

We have to show that limR→∞
∫
SR
f(z)dz = 0. On the semicircle SR, z = Reiθ, for

some θ ∈ [0, π], and hence

lim
R→∞

(z2 + 2z + 2)(z2 + 1)

R4
= lim
R→∞

R2e(2iθ + 2Reiθ + 2)(R2e2iθ + 1)

R4
= e4iθ.

Since |e4iθ| = 1, it follows that for large R, | (z
2+2z+2)(z2+1)

R4 | ≥ 1
2 . Thus for large R,

|f(z)| ≤ 2
R4 . Hence, for large R,∣∣∣∫

SR

f(z)dz
∣∣∣ ≤ 2

R4
`(SR) =

2π

R3
−→ 0 as R −→∞.

Thus limR→∞
∫
SR
f(z)dz = 0. Now∫ R

−R
f(x)dx =

∫
ΓR

f(z)dz −
∫
SR

f(z)dz =
2π

5
−
∫
SR

f(z)dz.

Letting R→∞ and using the fact that limR→∞
∫
SR
f(z)dz = 0, we get∫ ∞

−∞
f(x)dx =

2π

5
.
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