
LECTURE 20

Date of Lecture: March 29, 2022

1. Orders of zeros and poles

This section is not part of your second midterm.
As always, if z0 ∈ C then we write Br(z0) for the open disc of radius r centred

at z0.

1.1. Zeros of an analytic function. Let f be analytic in a domain D and z0 a
point in D such that f(z0) = 0. Let B = Br(z0) be an open disc centred at z0 such
that B ⊂ D. Since D is an open set , such a disc B exists. Now f has a Taylor’s
series expansion

f(z) =

∞∑
n=0

an(z − z0)n

where an = f (n)(z0)/n!. If f is not identically zero on B, we say f has a isolated
zero at z = z0. In this case there is an integer k > 0 such that ak 6= 0 but al = 0
for l < k. Thus

f(z) =

∞∑
n=k

an(z − z0)n = (z − z0)k
∞∑
n=0

an+k(z − z0)n.

Let g(z) =
∑∞
n=0 ank

(z − z0)n. Then g is analytic on B and g(z0) = ak 6= 0. Now
on the punctured disc B r {z0}, g(z) = f(z)/(z − z0)k, and hence g(z) can be
defined as an analytic function on D by setting it equal to f(z)/(z − z0)k when
z 6= 0.

The integer k is said to be the order of the isolated zero of f at z = z0. Thus f
has an isolated singularity at z = z0 if and only if we can write

f(z) = (z − z0)kg(z)

with for some k > 0 such that g(z0) 6= 0. If a0 6= 0 we often say that f has a zero
of order k = 0 at z0.

If f has an isolated zero or order one at z0 (for example f(z) = sin z, with
z0 = 0), then we often say f has a simple zero at z0.

1.2. Isolated Singularities. An analytic function f on a domain D is said to have
an isolated singularity at z0 ∈ C if z0 /∈ D, but there is an open disc B = Br(z0)
centred at z0 such that the punctured disc Br{z0} is contained D. In other words
z0 is “surrounded” by D though it does not belong to D.

Suppose z0 is an isolated singularity for an analytic function f . Let B be as
above. Then f has a Laurent expansion

f(z) = · · ·+ a−n
(z − z0)n

+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0) + . . . am(z − z0)m + . . .

There are three possibilities, namely:
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(i) The negatively indexed coefficients are all zero, i.e. ak = 0 for all k < 0. In
this case we say f has a removable singularity at z0. This is because the
power series represents an analytic function on B and so f can be extended
to z0 as an analytic function by defining f(z0) = a0, and in this way the
singularity at z0 can be “removed”.

(ii) There is a positive integer n such that a−n 6= 0 but ak = 0 for all k < −n.
In this case we say f has a pole of order n at z = z0. A pole of order one is
often called a simple pole.

(iii) There are an infinite number of negative integers k such that ak 6= 0. In other
words, the Laurent expansion of f has an infinite number of coefficients with
negative indices. In this case we say the f has an essential singularity at
z = z0.

Examples 1.2.1. (a) f(z) = (z2 + 2iz − 1)ez has an isolated zero of order 2 at
z = −i.

(b) f(z) =
sin z

z2 + 1
has simple zeros at πn, n = 0,±1,±2, . . . , and simple poles at

z = ±i.
(c) f(z) = e1/z has an essential singularity at 0. In fact its Laurent series is

obviously f(z) =
∑∞
n=0

1
n!

1
zn .

1.3. The Identity Principle. Suppose U is the set of points w in D such that
f (n)(w) = 0 for all n ≥ 0. Suppose U is non-empty. Let z0 ∈ U . Then Taylor’s
series for f centred at z0 is zero, since it is of the form

∑∞
n=0(f (n)(z0))/n!(z− z0)n.

This means that f identically zero in every disc Br(z0) centred at z0 contained in
D. Thus, by definition of an open set, U is open. On the other hand, if z∗ is a limit
point of U , then there exists a sequence points wn in U converging to z∗. Since
f (n) is differentiable, it is continuous, and hence f (n)(z∗) = limn→∞ f (n)(wn) = 0.
Thus w∗ ∈ U . In other words U is also closed, which means V = D r U is open.
Since U ∪ V = D and U ∩ V = ∅ and D is connected, by an argument we gave
earlier in the course,1 either U or V is empty. We have assumed U is non-empty.
So V = ∅, which means U = D. Thus f vanishes identically on D.

Suppose z0 ∈ D is such that f(z0) = 0 but z0 is not an isolated zero, i.e., in
every circular neighbourhood of z0 in D, there is a zero of f distinct from z0. In
that case all the coefficients an of the Taylor’s expansion of f around z0 are zero
(otherwise, we can write f(z) = (z − z0)kg(z) with g(z0) 6= 0 by looking at the
Taylor’s expansion, and this means z0 is an isolated zero of f , contradicting our
assumption). From what we argued above, this means f is identically zero on D.

Thus if f is an analytic function on a domain which does not vanish identically,
then the zeros of f are isolated.

Now suppose f(z) is an entire function such that f(x) = sin(x) when x is a real
number. Then the entire function g(z) = f(z) − sin(z) is identically zero on the
real line. Thus g does not have isolated zeros on R. Hence g is identically zero on
C. Hence f(z) = sin z for all z ∈ C.

Similarly, we know that sin2 x + cosx = 1 for x ∈ R. Let g be the constant
function 1. Then g(z) = sin2 z + cosz −1 is zero on the real axis, and hence its
zeros there are not isolated. This in turn means that g(z) is identically zero. Hence
sin2 z + cos2 z = 1 for z ∈ C.

1See Appendix to Lecture 17.

2



This phenomenon, that if two analytic functions on a domain agree on a line
segment, or on any set with a limit point, then they must agree on their entire
domain of definition is called the identity principle.

2. Examples

This section has material which is part of the midterm.

1. Let f(z) =
ez

ez + 1
.

(a) Does f have an antiderivative in the domain D shown in Figure 1 below?
(b) Let Γ be the semi-circle of radius 2 centred at 0 oriented in the clockwise

direction. Evaluate
∫

Γ
f(z)dz.

Figure 1. The domain D. The line segment starting from iπ and
going “north” indefinitely is not included, nor is the line segment
starting at −iπ and going south indeninitely. The points iπ and
−iπ are not included either. The black semicircle is centred at 0
and of radius 2.

Solution: For part (a), note that f(z) is analytic on D, since the zeros of the
denominator ez+1 occur only at n(iπ), with n an integer and these points are not
in D. D is clearly simply connected. We know that an every analytic function
on a simply connected domain has an antiderivative. So f has an anti-derivative.

For (b), since f is analytic on the simply connected domain, the given integral
is the same as the integral of f along any contour in D starting at −2 and
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terminating at 2, e.g. the line segment [−2, 2]. So∫
Γ

f(z)dz =

∫ 2

−2

f(x)dx

=

∫ 2

−2

ex

ex + 1
dx

= log (ex + 1)
]x=2

x=−2

= log

{
e2 + 1

e−2 + 1

}
= log e2

= 2.

2. Let f(z) =
z5 + 4z4 + 3z − 1

z6
. Evaluate

∮
|z|=1

f(z)dz.

Solution: There are two ways of doing this problem. The first is a follows. Let
g(z) = z5 + 4z4 + 3z − 1. Then the integral is∮

|z|=1

g(z)

z6
dz = (2πi)

g(5)(0)

5!
= (2πi)

5!

5!
= 2πi.

The second method is to note that for an integer n (positive or negative) zn

has an anti-derivative whenever n 6= −1, namely zn+1/(n + 1). Now f(z) =
1
z + 4

z2 + 3
z5 −

1
z6 . Since all the summands in the sum, except the first term, have

anti-derivatives, the integrals of these summands over loops in C r {0} is zero.
Hence∮

|z|=1

f(z)dz =

∮
|z|=1

1

z
dz +

∮
|z|=1

{
4

z2
+

3

z5
− 1

z6

}
dz = 2πi+ 0 = 2πi.

3. Suppose f is entire and |f(z)| ≤ |esin z| for z ∈ C. What can you say about f?
Give reasons.
Solution: One can show that f(z) = cesin z where c is a constant. Work out
the reason yourself.

3. Evaluating real integrals via contour integrals

You will not be tested on the material from this section for your second midterm.

Example. Evaluate
∫∞
−∞

1

(1 + x2)2
dx.

Solution: Extend the integrand to an analytic function f on C r {±i} by the
formula

f(z) =
1

(1 + z2)2
, (z ∈ Cr {−i, i}).

Let R be a real number with R > 1. Let AR be the semi-circle centred at 0 of
radius R directed from R to −R as in Figure 2 below. Let ΓR = AR + [−R,R].

The strategy is as follows. We will evaluate
∫

ΓR
f(z)dz =

∫
AR

f(z)dz+
∫ R
−R f(x)dx

using the Cauchy Integral Formula, and then show that limR→∞
∫
AR

f(z)dz = 0.
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Figure 2.

Since limR→∞
∫ R
−R f(x)dx =

∫∞
−∞

1

(1 + x2)2
dx, we will be able to arrive at the

answer.
Let us first evaluate

∫
ΓR
f(z)dz. We have, with g(z) = (z + i)−2,

(†)

∫
ΓR

f(z)dz =

∫
ΓR

1

(z + i)2(z − i)2
dz =

∫
ΓR

g(z)

(z − i)2
dz

= (2πi)g′(i)

= (2πi)(−2)(z + i)−3
∣∣∣
z=i

= (2πi)(−2)
1

(−8i)

=
π

2
.

Now, from Figure 2,

(‡)
∫

ΓR

f(z)dz =

∫
AR

f(z)dz +

∫ R

−R
f(x)dx.

We will now show that limR→∞
∫
AR

f(z)dz = 0. If z lies on AR, then z = Reit

for some R. In this case 1 + z2 = 1 + R2e2it. Since |a− b| ≥ |a| − |b|, we have
|1 + z2| = |1 +R2e2it| ≥ R2 − 1. We therefore have,∣∣∣∣∣

∫
AR

f(z)dz

∣∣∣∣∣ ≤ 1

(R2 − 1)2
`(AR) =

Rπ

(R2 − 1)2
.

Now limR→∞
Rπ

(R2−1)2 = 0. It follows that limR→∞
∫
AR

f(z)dz = 0. From this

and from the equations (†) and (‡) above, we get,∫ ∞
−∞

dx

(1 + x2)2
= lim
R→∞

∫ R

−R
f(x)dx = lim

R→∞

∫
ΓR

f(z)dz − lim
R→∞

∫
AR

f(z)dz =
π

2
.

As an exercise, evaluate the same integral using the substitution x = tan θ and
the formula cos2 θ = 1

2 (cos (2θ) + 1).
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