LECTURE 20

Date of Lecture: March 29, 2022

1. Orders of zeros and poles

This section is not part of your second midterm.
As always, if $z_{0} \in \mathbb{C}$ then we write $B_{r}\left(z_{0}\right)$ for the open disc of radius r centred at z_{0}.
1.1. Zeros of an analytic function. Let f be analytic in a domain D and z_{0} a point in D such that $f\left(z_{0}\right)=0$. Let $B=B_{r}\left(z_{0}\right)$ be an open disc centred at z_{0} such that $B \subset D$. Since D is an open set, such a disc B exists. Now f has a Taylor's series expansion

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n}=f^{(n)}\left(z_{0}\right) / n$!. If f is not identically zero on B, we say f has a isolated zero at $z=z_{0}$. In this case there is an integer $k>0$ such that $a_{k} \neq 0$ but $a_{l}=0$ for $l<k$. Thus

$$
f(z)=\sum_{n=k}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\left(z-z_{0}\right)^{k} \sum_{n=0}^{\infty} a_{n+k}\left(z-z_{0}\right)^{n}
$$

Let $g(z)=\sum_{n=0}^{\infty} a_{n_{k}}\left(z-z_{0}\right)^{n}$. Then g is analytic on B and $g\left(z_{0}\right)=a_{k} \neq 0$. Now on the punctured disc $B \backslash\left\{z_{0}\right\}, g(z)=f(z) /\left(z-z_{0}\right)^{k}$, and hence $g(z)$ can be defined as an analytic function on D by setting it equal to $f(z) /\left(z-z_{0}\right)^{k}$ when $z \neq 0$.

The integer k is said to be the order of the isolated zero of f at $z=z_{0}$. Thus f has an isolated singularity at $z=z_{0}$ if and only if we can write

$$
f(z)=\left(z-z_{0}\right)^{k} g(z)
$$

with for some $k>0$ such that $g\left(z_{0}\right) \neq 0$. If $a_{0} \neq 0$ we often say that f has a zero of order $k=0$ at z_{0}.

If f has an isolated zero or order one at z_{0} (for example $f(z)=\sin z$, with $z_{0}=0$), then we often say f has a simple zero at z_{0}.
1.2. Isolated Singularities. An analytic function f on a domain D is said to have an isolated singularity at $z_{0} \in \mathbb{C}$ if $z_{0} \notin D$, but there is an open disc $B=B_{r}\left(z_{0}\right)$ centred at z_{0} such that the punctured disc $B \backslash\left\{z_{0}\right\}$ is contained D. In other words z_{0} is "surrounded" by D though it does not belong to D.

Suppose z_{0} is an isolated singularity for an analytic function f. Let B be as above. Then f has a Laurent expansion

$$
f(z)=\cdots+\frac{a_{-n}}{\left(z-z_{0}\right)^{n}}+\cdots+\frac{a_{-1}}{z-z_{0}}+a_{0}+a_{1}\left(z-z_{0}\right)+\ldots a_{m}\left(z-z_{0}\right)^{m}+\ldots
$$

There are three possibilities, namely:
(i) The negatively indexed coefficients are all zero, i.e. $a_{k}=0$ for all $k<0$. In this case we say f has a removable singularity at z_{0}. This is because the power series represents an analytic function on B and so f can be extended to z_{0} as an analytic function by defining $f\left(z_{0}\right)=a_{0}$, and in this way the singularity at z_{0} can be "removed".
(ii) There is a positive integer n such that $a_{-n} \neq 0$ but $a_{k}=0$ for all $k<-n$. In this case we say f has a pole of order n at $z=z_{0}$. A pole of order one is often called a simple pole.
(iii) There are an infinite number of negative integers k such that $a_{k} \neq 0$. In other words, the Laurent expansion of f has an infinite number of coefficients with negative indices. In this case we say the f has an essential singularity at $z=z_{0}$.

Examples 1.2.1. (a) $f(z)=\left(z^{2}+2 i z-1\right) e^{z}$ has an isolated zero of order 2 at $z=-i$.
(b) $f(z)=\frac{\sin z}{z^{2}+1}$ has simple zeros at $\pi n, n=0, \pm 1, \pm 2, \ldots$, and simple poles at $z= \pm i$.
(c) $f(z)=e^{1 / z}$ has an essential singularity at 0 . In fact its Laurent series is obviously $f(z)=\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^{n}}$.
1.3. The Identity Principle. Suppose U is the set of points w in D such that $f^{(n)}(w)=0$ for all $n \geq 0$. Suppose U is non-empty. Let $z_{0} \in U$. Then Taylor's series for f centred at z_{0} is zero, since it is of the form $\sum_{n=0}^{\infty}\left(f^{(n)}\left(z_{0}\right)\right) / n!\left(z-z_{0}\right)^{n}$. This means that f identically zero in every disc $B_{r}\left(z_{0}\right)$ centred at z_{0} contained in D. Thus, by definition of an open set, U is open. On the other hand, if z^{*} is a limit point of U, then there exists a sequence points w_{n} in U converging to z^{*}. Since $f^{(n)}$ is differentiable, it is continuous, and hence $f^{(n)}\left(z^{*}\right)=\lim _{n \rightarrow \infty} f^{(n)}\left(w_{n}\right)=0$. Thus $w^{*} \in U$. In other words U is also closed, which means $V=D \backslash U$ is open. Since $U \cup V=D$ and $U \cap V=\emptyset$ and D is connected, by an argument we gave earlier in the course, ${ }^{1}$ either U or V is empty. We have assumed U is non-empty. So $V=\emptyset$, which means $U=D$. Thus f vanishes identically on D.

Suppose $z_{0} \in D$ is such that $f\left(z_{0}\right)=0$ but z_{0} is not an isolated zero, i.e., in every circular neighbourhood of z_{0} in D, there is a zero of f distinct from z_{0}. In that case all the coefficients a_{n} of the Taylor's expansion of f around z_{0} are zero (otherwise, we can write $f(z)=\left(z-z_{0}\right)^{k} g(z)$ with $g\left(z_{0}\right) \neq 0$ by looking at the Taylor's expansion, and this means z_{0} is an isolated zero of f, contradicting our assumption). From what we argued above, this means f is identically zero on D.

Thus if f is an analytic function on a domain which does not vanish identically, then the zeros of f are isolated.

Now suppose $f(z)$ is an entire function such that $f(x)=\sin (x)$ when x is a real number. Then the entire function $g(z)=f(z)-\sin (z)$ is identically zero on the real line. Thus g does not have isolated zeros on \mathbb{R}. Hence g is identically zero on \mathbb{C}. Hence $f(z)=\sin z$ for all $z \in \mathbb{C}$.

Similarly, we know that $\sin ^{2} x+\cos ^{x}=1$ for $x \in \mathbb{R}$. Let g be the constant function 1. Then $g(z)=\sin ^{2} z+\cos ^{z}-1$ is zero on the real axis, and hence its zeros there are not isolated. This in turn means that $g(z)$ is identically zero. Hence $\sin ^{2} z+\cos ^{2} z=1$ for $z \in \mathbb{C}$.

[^0]This phenomenon, that if two analytic functions on a domain agree on a line segment, or on any set with a limit point, then they must agree on their entire domain of definition is called the identity principle.

2. Examples

This section has material which is part of the midterm.

1. Let $f(z)=\frac{e^{z}}{e^{z}+1}$.
(a) Does f have an antiderivative in the domain D shown in Figure 1 below?
(b) Let Γ be the semi-circle of radius 2 centred at 0 oriented in the clockwise direction. Evaluate $\int_{\Gamma} f(z) d z$.

Figure 1. The domain D. The line segment starting from $i \pi$ and going "north" indefinitely is not included, nor is the line segment starting at $-i \pi$ and going south indeninitely. The points $i \pi$ and $-i \pi$ are not included either. The black semicircle is centred at 0 and of radius 2 .

Solution: For part (a), note that $f(z)$ is analytic on D, since the zeros of the denominator $e^{z}+1$ occur only at $n(i \pi)$, with n an integer and these points are not in D. D is clearly simply connected. We know that an every analytic function on a simply connected domain has an antiderivative. So f has an anti-derivative.

For (b), since f is analytic on the simply connected domain, the given integral is the same as the integral of f along any contour in D starting at -2 and
terminating at 2 , e.g. the line segment $[-2,2]$. So

$$
\begin{aligned}
\int_{\Gamma} f(z) d z & =\int_{-2}^{2} f(x) d x \\
& =\int_{-2}^{2} \frac{e^{x}}{e^{x}+1} d x \\
& \left.=\log \left(e^{x}+1\right)\right]_{x=-2}^{x=2} \\
& =\log \left\{\frac{e^{2}+1}{e^{-2}+1}\right\} \\
& =\log e^{2} \\
& =2
\end{aligned}
$$

2. Let $f(z)=\frac{z^{5}+4 z^{4}+3 z-1}{z^{6}}$. Evaluate $\oint_{|z|=1} f(z) d z$.

Solution: There are two ways of doing this problem. The first is a follows. Let $g(z)=z^{5}+4 z^{4}+3 z-1$. Then the integral is

$$
\oint_{|z|=1} \frac{g(z)}{z^{6}} d z=(2 \pi i) \frac{g^{(5)}(0)}{5!}=(2 \pi i) \frac{5!}{5!}=2 \pi i .
$$

The second method is to note that for an integer n (positive or negative) z^{n} has an anti-derivative whenever $n \neq-1$, namely $z^{n+1} /(n+1)$. Now $f(z)=$ $\frac{1}{z}+\frac{4}{z^{2}}+\frac{3}{z^{5}}-\frac{1}{z^{6}}$. Since all the summands in the sum, except the first term, have anti-derivatives, the integrals of these summands over loops in $\mathbb{C} \backslash\{0\}$ is zero. Hence

$$
\oint_{|z|=1} f(z) d z=\oint_{|z|=1} \frac{1}{z} d z+\oint_{|z|=1}\left\{\frac{4}{z^{2}}+\frac{3}{z^{5}}-\frac{1}{z^{6}}\right\} d z=2 \pi i+0=2 \pi i .
$$

3. Suppose f is entire and $|f(z)| \leq\left|e^{\sin z}\right|$ for $z \in \mathbb{C}$. What can you say about f ? Give reasons.
Solution: One can show that $f(z)=c e^{\sin z}$ where c is a constant. Work out the reason yourself.

3. Evaluating real integrals via contour integrals

You will not be tested on the material from this section for your second midterm.
Example. Evaluate $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$.
Solution: Extend the integrand to an analytic function f on $\mathbb{C} \backslash\{ \pm i\}$ by the formula

$$
f(z)=\frac{1}{\left(1+z^{2}\right)^{2}}, \quad(z \in \mathbb{C} \backslash\{-i, i\})
$$

Let R be a real number with $R>1$. Let A_{R} be the semi-circle centred at 0 of radius R directed from R to $-R$ as in Figure 2 below. Let $\Gamma_{R}=A_{R}+[-R, R]$.

The strategy is as follows. We will evaluate $\int_{\Gamma_{R}} f(z) d z=\int_{A_{R}} f(z) d z+\int_{-R}^{R} f(x) d x$ using the Cauchy Integral Formula, and then show that $\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=0$.

Figure 2.
Since $\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$, we will be able to arrive at the answer.

Let us first evaluate $\int_{\Gamma_{R}} f(z) d z$. We have, with $g(z)=(z+i)^{-2}$,

$$
\begin{align*}
\int_{\Gamma_{R}} f(z) d z=\int_{\Gamma_{R}} \frac{1}{(z+i)^{2}(z-i)^{2}} d z & =\int_{\Gamma_{R}} \frac{g(z)}{(z-i)^{2}} d z \\
& =(2 \pi i) g^{\prime}(i) \\
& =\left.(2 \pi i)(-2)(z+i)^{-3}\right|_{z=i} \\
& =(2 \pi i)(-2) \frac{1}{(-8 i)} \\
& =\frac{\pi}{2}
\end{align*}
$$

Now, from Figure 2,

$$
\int_{\Gamma_{R}} f(z) d z=\int_{A_{R}} f(z) d z+\int_{-R}^{R} f(x) d x
$$

We will now show that $\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=0$. If z lies on A_{R}, then $z=R e^{i t}$ for some R. In this case $1+z^{2}=1+R^{2} e^{2 i t}$. Since $|a-b| \geq|a|-|b|$, we have $\left|1+z^{2}\right|=\left|1+R^{2} e^{2 i t}\right| \geq R^{2}-1$. We therefore have,

$$
\left|\int_{A_{R}} f(z) d z\right| \leq \frac{1}{\left(R^{2}-1\right)^{2}} \ell\left(A_{R}\right)=\frac{R \pi}{\left(R^{2}-1\right)^{2}}
$$

Now $\lim _{R \rightarrow \infty} \frac{R \pi}{\left(R^{2}-1\right)^{2}}=0$. It follows that $\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=0$. From this and from the equations (\dagger) and (\ddagger) above, we get,

$$
\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=\lim _{R \rightarrow \infty} \int_{\Gamma_{R}} f(z) d z-\lim _{R \rightarrow \infty} \int_{A_{R}} f(z) d z=\frac{\pi}{2}
$$

As an exercise, evaluate the same integral using the substitution $x=\tan \theta$ and the formula $\cos ^{2} \theta=\frac{1}{2}(\cos (2 \theta)+1)$.

[^0]: ${ }^{1}$ See Appendix to Lecture 17.

