Algebraic operations:
Let $z_{1}, z_{2}, z_{3} \in \mathbb{C}$.

$$
\begin{gathered}
z_{1}+z_{2}=z_{2}+z_{1} \\
z_{1} z_{2}=z_{2} z_{1} \\
\\
z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}
\end{gathered}
$$

Let un prove the third property.
Let $z_{1}=a_{1}+i b_{1}, z_{2}=a_{2}+i b_{2}, \quad z_{5}=a_{3}+i b_{3}$;
$a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$.

$$
\begin{aligned}
& \left(a_{1}+i b_{1}\right)\left\{\left(a_{2}+i b_{2}\right)+\left(a_{3}+i b_{3}\right)\right\} \\
= & \left(a_{1}+i b_{1}\right)\left\{\left(a_{2}+a_{3}\right)+i\left(b_{2}+b_{3}\right)\right\} \\
= & a_{1}\left(a_{2}+a_{3}\right)-b_{1}\left(b_{2}+b_{3}\right)+i\left\{a_{1}\left(b_{2}+b_{3}\right)+b_{1}\left(a_{2}+a_{3}\right)\right\} \\
= & a_{1} a_{2}+a_{1} a_{3}-b_{1} b_{2}-b_{1} b_{3} \\
& +i\left\{a_{1} b_{2}+a_{1} b_{3}+b_{1} a_{2}+b_{1} a_{3}\right\} \\
= & a_{1} a_{2}-b_{1} b_{2}+i\left\{a_{1} b_{2}+b_{1} a_{2}\right\} \\
& +a_{1} a_{3}-b_{1} b_{3}+i\left\{a_{1} \frac{b}{3}+b_{1} a_{3}\right\} \\
= & z_{1} z_{2}+z_{1} z_{3} .
\end{aligned}
$$

so $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$.

Couples conjugates (again):
Recall that if $z=a+i b \in \mathbb{C}, \quad \operatorname{Re}(z)=a, \operatorname{Im}(z)=b$, then its complex conjugate is

$$
\bar{z}=a-i \dot{b} .
$$

Last time, we rowe that

$$
z \bar{z}=(a+i b)(a-i b)=a^{2}+b^{2}=|z|^{2} .
$$

So
(1) $z \bar{z}=|z|^{2}$
if $z \neq 0$, then

(3) $\quad\left|z_{1} z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$

Proof A(3): Enough to show

$$
\begin{aligned}
& \left|z_{1} z_{1}\right|^{2}=\left|z_{1}\right|^{2} \cdot\left|z_{2}\right|^{2} \\
\text { The life side } & =\left(z_{1} z_{2}\right)\left(z_{1} z_{2}\right) \\
& \left.=z_{1} z_{2}\left(\overline{z_{1}} \overline{z_{2}}\right) \quad \frac{\text { chalk }}{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}\right) \\
& =z_{1} \overline{z_{1}} z_{2} \overline{z_{2}} \\
& =\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}
\end{aligned}
$$

Examples

1. Cal culate $\left|(1+2 i)^{10}\right|$.

Sole: From the above formulas

$$
\begin{aligned}
\left|(1+2 i)^{10}\right| & =|1+2 i|^{10} \\
& =\left(\sqrt{1^{2}+2^{2}}\right)^{10}
\end{aligned}
$$

$$
\begin{aligned}
& =(\sqrt{5})^{10} \\
& =5^{5} \longleftarrow \text { Ans. }
\end{aligned}
$$

Triangle inequality:
Using the vector interpretation of couples monks:
(a) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad(\Delta$-inieq)

(b)

$$
\left|z_{1}-z_{2}\right| \geqslant\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \quad \text { (Exemise) }
$$

Whit: Let $w_{1}=z_{1}-z_{2}, w_{2}=z_{2}$.
Use the Δ-inequality on $w_{1}+w_{2}$

Polar from of a complex:
 non-arigir point.

It follows that if $z \in \mathbb{C}, \operatorname{Re}(z)=x, \operatorname{In}(z)=y$, then, if $z \neq 0$,

$$
z=r(\cos \theta+i \sin \theta)
$$

The polar fem

$$
\eta \quad z \neq 0
$$

The angle θ is ambiguous. We know it up ts addition by $2 \pi k$, where k is an integer.

$$
\mathbb{Z}=\text { set of integer. }
$$

$r=|z|$. No ambiguity.
θ ia called an ongrment of z.
It ie aunligorns: it is a "multi-naluel" foution
Pick any one augment $\theta_{0} A z$.

$$
\arg (z)=\left\{\theta_{0}+2 \pi k \mid k \in \mathbb{Z}\right\} .
$$

Can we make things less ambergous?
Pick any number $\tau \in \mathbb{R}$. Then

$$
\arg (z) \cap(\tau, \tau+2 \pi]
$$

consists of only one point. This is single element is denoted $\arg _{c}(z)$.
The Primipal Argument:
Lit $z \in \mathbb{C} \backslash\{0\}$. The principal argument of z is

$$
\operatorname{Arg}(z)=\arg _{-\pi}(z) .
$$

In other words Arg (z) is the only engument of z lying in $(-\pi, \pi]$.

Examples:

1. If $r=2, \theta=\pi / 3$, what is z ?
ans: $z=2(\cos (\pi / 3)+i \sin (\pi / 3))$

$$
\begin{aligned}
& =2\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right) \\
& =1+i \sqrt{3} .
\end{aligned}
$$

2. If $z=2+2 i$, wite a polar form of z.

Solve:

$$
r=|z|=\sqrt{2^{2}+2^{2}}=(\sqrt{2})(2) .
$$

$$
z=2 \sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))
$$

Question: Is $r=|z|$, and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$ a good formula for the polar form?

Ans: No. Take $z=-5-5 i$.
$r=5 \sqrt{2}$ (chute this).

Note that in the above the only member of the set arg $(-5-5 i)$ lying in $(-\pi, \pi]$ is $-\frac{3 \pi}{4}$.
so Arg $(-5-5 i)=-\frac{3 \pi}{4}$.
The complex exponential:
we want to make sense of e^{z}, when $z \in \mathbb{C}$. Ie should have the following properties:
ca) $e^{z_{1}+z_{2}}=e^{z_{1}} \cdot e^{z_{2}}, e^{0}=1$
(b) $\quad \frac{d e^{i y}}{d y}=i e^{i y}, \quad y \in \mathbb{R}$.

Let $z=x+i y$. Then, of we have an exponential function will the above propels,

$$
e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}
$$

It remain to define $e^{i y}$.
have already
defined this.
It has to satisfy the following:-

$$
\begin{aligned}
& \frac{d e^{i y}}{d y}=i e^{i y} \\
& \frac{d^{2} e^{i y}}{d y^{2}}=i\left(i e^{i y}\right)=-e^{i y} \quad\left(\sin i^{2}=-1\right)
\end{aligned}
$$

Recall from diff. equs, if $g(y)$ is a function sunk that $\frac{d^{2}}{d y^{2}} g(y)=-g(y)$ then.

$$
g(y)=c_{1} \cos (y)+c_{2} \sin (y)
$$

The above is from the ltreing of diff equs.
So $e^{i y}=c \cos (y)+c_{2} \sin (y)$.
Oho, since $\frac{d}{d y} e^{i y}=i e^{i y}$, we get

$$
\begin{equation*}
i e^{i y}=c_{2} \cos (y)-c_{1} \sin (y) \tag{2}
\end{equation*}
$$

set $y=0$ in θ. Get

$$
1=c_{1}
$$

set $y=0$ in (2). Get

$$
i=c_{2}
$$

So $e^{i y}=\cos y+i \sin y$.

Defintion: $e^{x+i y}=e^{x}(\cos y+i \sin y), x, y \in \mathbb{R}$.

Recall that

$$
\begin{aligned}
& \cos \left(\theta_{1}+\theta_{2}\right)=\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2} \\
& \sin \left(\theta_{1}+\theta_{2}\right)=\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}
\end{aligned}
$$

Using this, one churls easily that

$$
\left.\left.\begin{array}{rl}
& e^{i \theta_{1}} \cdot e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)} \\
\left(\cos \theta_{1}+\right. & \left.i \sin \theta_{1}\right) \cdot\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
= & \left(\cos \theta_{1} \cos \theta_{2}\right.
\end{array}\right)-\sin \theta_{1} \sin \theta_{2}\right) .
$$

the $e^{i \theta_{2}} \cdot e^{i \theta_{2}}=e^{i\left(\theta_{1}+\theta_{2}\right)}$
This also shows that

$$
\begin{aligned}
& e^{\left(x_{1}+i y_{1}\right)} \cdot e^{\left(x_{2}+i y_{2}\right)} \\
& =e^{x_{1}+x_{2}+i\left(y_{1}+y_{2}\right)}
\end{aligned}
$$

\& $\quad e^{z_{1}} \cdot e^{z_{2}}=e^{z_{1}+z_{2}}$.

$$
\begin{aligned}
\frac{\left(\cos \theta_{1}+i \sin \theta_{1}\right)}{\cos \theta_{2}+i \sin \theta_{2}}= & \frac{e^{i \theta_{1}}}{e^{i \theta_{2}}} \stackrel{d}{=} e^{i\left(\theta_{1}-\theta_{2}\right)} \\
& =\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right) .
\end{aligned}
$$

The polar form now berous (for $z \neq 0$)

$$
z=r e^{i \theta}
$$

whore $r=(z)$, and $\theta \in \operatorname{ang}(z)$.
Note that

$$
e^{i(\theta+2 \pi k)}=e^{i \theta} .
$$

So $e^{i \theta}$ is 2π-periodic.
suppose $z_{1}=r_{1} e^{i \theta_{1}}, z_{2}=r_{2} e^{i \theta_{2}}$ (polar fans)
then

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

Notts: $\quad \theta \in \mathbb{R}$
(1) $\quad e^{i 0}=1, \quad e^{i \pi / 2}=i, \quad e^{i \pi}=-1, \quad e^{3 \pi / 2}=-i$.

We are using the fent that

$$
|\cos \theta+i \sin \theta|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 .
$$

so $\quad\left|e^{i v}\right|=1$.

(2) $\quad \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$
(3) $z=r e^{i \theta}$, then $\bar{z}=r e^{-i \theta}$.

Example: 1. $\frac{e^{1+3 \pi i}}{e^{-1+3 \pi i}}=$? (do this gruseif)
2. Prone that $\left(e^{z}\right) \leqslant 1$ if $\operatorname{Re}(z) \leqslant 0$.
<compat>ᄂ<compat>ᅳ: Suse $z=x+i y, x, y \in \mathbb{R}$.

$$
e^{z}=e^{x} \cdot e^{i y}
$$

so $\left|e^{z}\right|=e^{x} \quad\left(\sin c e \quad\left|e^{i} y\right|=1\right)$
The right side is ≤ 1 if and only if $x \leq 0$. $/$

Branch cent for $\operatorname{Arg}(z)$

Then $\operatorname{Arg}\left(z_{1}\right) \approx \pi, \quad \operatorname{Arg}\left(z_{2}\right) \approx-\pi$.

So An g $C_{z}>$ has a discontimily along the rejutue x-axis. This is called a branch cut.

In gevernel $\arg _{\tau}(z)$ has a discontinuity along the line making an angle τ with the x - axis.

Roots o unity: What ane the $n^{\text {th }}$ cots of 1?

$$
1=e^{i 2 \pi k} \quad, k \in \mathbb{Z}
$$

Nae that $\left(e^{i(2 \pi k) / n}\right)^{n}=e^{i(2 \pi k)}=1$ So $e^{i(2 \pi k) / n}$ is am $n^{\text {isth }}$ root of 1 . Check: ${ }_{e^{i(0) / n}}^{1}, e^{i(2 \pi) / n}, e^{i(4 \pi) / n}, \ldots, e^{i(2 \pi(n-1)) / n}$
are the distinct $n^{\text {tr }}$ roots 91 .
These are the solutions of

$$
z^{n}-1=0
$$

