
LECTURE 19

Date of Lecture: March 24, 2022

Many thanks to Diana Ryoo for lending me her copy of the class notes.

1. Examples of Taylor and Maclaurin series

1.1. Recap of basic facts about power series. From the last lecture we know
that if f is analytic in Br(z0), the disc of radius r centred at z0, then it has a power
series expansion, called the Taylor series for f at z0

(1.1.1) f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n, z ∈ Br(z0).

If z0 = 0, the series in (1.1.1) is called the Maclaurin series for f .
We also know that a power series

∞∑
n=0

an(z − z0)n

has a radius of convergence R such that for |z − z0| < R the power series converges,
and for |z − z0| > R the series diverges. In the appendix for this lecture we will
prove that if limn→∞|an|1/n exists, then a power series can be computed by the
following formula

(1.1.2) R =
1

lim
n→∞

|an|1/n
.

We will prove (1.1.2) in the appendix (see Theorem A.1). We proved in the last
class that within the radius of convergence of

∑∞
n=0 an(z − z0)n, the function

f(z) =

∞∑
n=0

an(z − z0)n

is analytic, with derivative

f ′(z) =

∞∑
n=1

nan(z − z0)n−1.

The above formula also gives us,

(1.1.3) an =
f (n)(z0)

n!
.
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1.2. Examples. Here are some examples.

1. Let

f(z) = ez.

Find the Maclaurin’s series for f .

Solution: Since f is entire, the corresponding Maclaurin series is convergent
for all z ∈ C. Now f (n)(z) = ez for all n ≥ 0 and hence f (n)(0) = 1 for all n ≥ 0.
Thus the Maclaurin series for ez is

ez =

∞∑
n=0

zn

n!
.

2. Let

f(z) = sin z.

Find the Maclaurin’s series for f .

Solution: Once again we have an entire function, and so the Maclaurin series
will converge for all complex numbers z. Since f ′(z) = cos z, and f ′′(z) = − sin z,
one sees easily that f (2n)(z) = (−1)n sin z and f (2n+1)(z) = (−1)n cos z, for
n ≥ 0. This means f (2n)(0) = 0, and f (2n+1)(0) = (−1)n. It is now easy to see
that

sin z =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 = z − 1

3!
z3 +

1

5!
z5 − 1

7!
z7 + . . . .

3. Let

f(z) = cos z.

Find the Maclaurin’s series for f .

Solution: Using the same technique as above (note that f (2n)(z) = (−1)n cos z
and and f (2n+1)(z) = (−1)n+1 sin z, we see that

cos z =

∞∑
n=0

(−1)n

(2n)!
z2n = 1− 1

2!
z2 +

1

4!
z4 − 1

6!
z6 + . . . .

Remark 1.2.1. We do not have to use (1.1.3) to find the Maclaurin series for sin z
and cos z. One can also work these out by using the formulas

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2

and then substituting the Maclaurin series for eiz and e−iz from 1.

4. Let

f(z) = 1/(1− z).
Find the Maclaurin’s series for f . What is the radius of convergence R of this
Maclaurin series?
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Solution: Then f (n)(z) = n!/(1 − z)n+1, n ≥ 0. Thus f (n)(0)/n! = 1, n ≥ 0.
The Maclaurin series for f is therefore,

∑∞
n=0 z

n. The radius of convergence is

R =
1

lim
n→∞

|an|1/n
,

where an = 1 for every n. Thus R = 1. Thus

1

1− z
= 1 + z + z2 + · · ·+ zn + . . .

for |z| < 1.

1.3. Leibniz’s rule and the Cauchy product of power series. Suppose f and
g are analytic on a domain D. A repeated application of the product rule gives the
formula

(1.3.1) (fg)(n) =

n∑
k=0

(
n

k

)
f (k)g(n−k).

The formula (1.3.1) is called the Leibniz rule. Now suppose
∑∞

n=0 an(z − z0)n

and
∑∞

n=0 bn(z − z0)n are power series, with radius of convergence R1 and R2

respectively. Let r be a positive number less than the minimum of R1 and R2.
On Br(z0) we have two analytic functions, namely f(z) =

∑∞
n=0 an(z − z0)n and

g(z) =
∑∞

n=0 bn(z − z0)n, Applying Leibniz’s rule above as well as the formula
(1.1.3) we see that on Br(z0) we have

(1.3.2)
( ∞∑
n=0

an(z − z0)n
)( ∞∑

n=0

bn(z − z0)n
)

=

∞∑
n=0

cn(z − z0)n,

where

(1.3.3) cn =

n∑
k=0

akbn−k.

5. Find the first three nonzero terms of the Maclaurin series for

f(z) = ez sin z

using the Cauchy product of power series.

Solution: Let ez sin z =
∑

n=0 cnz
n. Then

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0

where an are the coefficients of the Maclaurin series for ez and bn the coefficients
of the Maclaurin series for sin z. Note that an = 1/n! for all n ≥ 0 and b0 = 0,
b1 = 1, b2 = 0, b3 = −(1/3!), b4 = 0, b5 = 1/5!, b6 = 0, b7 = −(1/7!). Then

c0 = a0b0 = (1)(0) = 0

c1 = a0b1 + a1b0 = (1)(1) + (1)(0) = 1

c2 = a0b2 + a1b1 + a2b0 = (1)(0) + (1)(1) + (1/2)(0) = 1

c3 = a0b3 + a1b2 + a2b1 + a3b0 = (1)(−1/6) + (1)(0) + (1/2)(1) + (1/6)(0) = 1/3

Thus

ez sin z = z + z2 + 1
3z

3 + . . .
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6. Let

f(z) =
1

1 + csc z

where csc z = 1/ sin z. Find the first three nonzero terms of the Maclaurin series
for f .

Solution: A simple computation shows that

f(z) =
sin z

1 + sin z
.

We will use a technique called the method of undetermined coefficients. First
note that

f(z)(1 + sin z) = sin z.

Let f(z) =
∑

n≥0 anz
n and 1 + sin z =

∑
n≥0 bnz

n. Then sin z =
∑

n≥0 cnz
n,

where cn =
∑n

k=0 akbn−k. Since we know bn and cn, we should be able to solve
for an. We have

b0 = 1, b1 = 1, b2 = 0, b3 = −1

6
, b4 = 0, b5 =

1

120

c0 = 0, c1 = 1, c2 = 0, c3 = −1

6
, c4 = 0, c5 =

1

120

The equations we have to solve are

(a0)(1) = 0

(a0)(1) + (a1)(1) = 1

(a0)(0) + (a1)(1) + (a2)(1) = 0

(a0)(−1/6) + (a1)(0) + (a2)(1) + (a3)(1) = −1

6
...

From this we see that a0 = 0, a1 = 1, a2 = −1, a3 = 5
6 . The Maclaurin series

for f(z), with the first three nonzero terms being displayed, is

f(z) = z − z2 + 5
6z

3 + . . .

7. Let f(z) =
∑∞

n=0
n4

2n z
n. Compute

(a) The radius of convergence of f
(b) f (5)(0)
(c)

∮
|z|=1

f(z)dz

(d)
∮
|z|=1

f(z) cos z
z2 dz

Solution: Let an = n4

2n . Note that |an| = an.
(a) Using logarithms for positive real numbers and L’Hôpital’s Rule, we see

that limn→∞(n4)1/n = 1. It follows that limn→∞ a
1/n
n = 1/2. Thus the

radius of convergence is R = 2.

(b) f (5)(0) = (3!)a5 = (5!)
54

25
.
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(c) Since the radius of convergenceof the given power seris is 2, f is analytic in
D = B2(0), the open disc of radius 2 centred at z = 0. The circle |z| = 1
is contained in D. By the Cauchy Integral Theorem∮

|z|=1

f(z)dz = 0.

(d) Let g(z) = f(z) cos z. Since f(z) is analytic on B2(0) and cos z is entire,
g(z) is analytic on B2(0). Thus∮

|z|=1

f(z) cos z

z2
dz =

∮
|z|=1

g(z)

z2
dz

= (2πi)g′(0)

= (2πi)(f ′(0) cos (0)− f(0) sin (0))

= (2πi)f ′(0) = (2πi)a1

= (2πi)(1/2) = πi.

2. Laurent Series

2.1. Analytic functions on annuli. The region between to concentric circles is
called an annulus. When we include the the two bounding circles in the region is
is called a closed annulus and when we exclude both of them, it is called an open
annulus. The smaller circle’s radius is usually denoted r, and the larger circle’s
radius as R. If the common centre is z0 then the open annulus we are discussing is
the set

{z ∈ C | r < |z − z0| < R},
and the closed annulus is

{z ∈ C | r ≤ |z − z0| ≤ R}.
There are half-open annuli, in which one of the boundary circles is included and
the other excluded.

Figure 1. The region between the purple circle and the green
circle is an annulus centred at z0
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Here is the main theorem (which we will prove after doing a long example).

Theorem 2.1.1. Let f be analytic on the annulus {z ∈ C | r < |z − z0| < R}.
Then f can be expressed on this annulus as the sum of two series

f(z) =

∞∑
n=1

a−n
(z − z0)n

+

∞∑
n=0

an(z − z0)n.

The coefficients an, for n an integer (positive or negative), are given by

an =
1

2πi

∮
C

f(ζ)

(ζ − z0)n+1
dζ

where C is a positively oriented simple loop containing in the annulus with z0 in its
interior.

The series in the theorem is called the Laurent expansion or the Laurent series
of f in the annulus {z ∈ C | r < |z − z0| < R}.

One rarely uses the integral formula to compute the coefficients as the following
example shows.

8. Find the Laurent expansion of

f(z) =
z

(z − 1)(z − 3)

in
(a) the annulus A = {z ∈ C | 1 < |z| < 3};
(b) the disc B1(0) = {z ∈ C | |z| < 1}; and
(c) the open set D = {z ∈ C | |z| > 3}.

Solution: We will repeatedly use the power series in Example 4, namely

(∗) 1

1− w
= 1 + w + w2 + · · ·+ wn + . . . (|w| < 1).

We have the partial fraction decompostion

z

(z − 1)(z − 3)
=
−(1/2)

z − 1
+

3/2

z − 3
.

(a) Let w = 1/z. On A, |z| > 1, whence |w| < 1 and so (∗) applies to w. Now

1

z − 1
=

w

1− w
= w

∞∑
n=0

wn (from (∗))

=

∞∑
n=0

1

zn+1

=

∞∑
n=1

1

zn
.
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Next, since |z| < 3 on A, therefore |z/3| < 1 and hence (∗), applies to
w = z/3. Thus

1

z − 3
= −

(1

3

) 1

1− (z/3)

= −1

3

∞∑
n=0

zn

3n
(from (∗))

= −
∞∑

n=0

zn

3n+1
.

Combining our calculations we get

z

(z − 1)(z − 3)
=

∞∑
n=1

(
−1

2

)
zn −

∞∑
n=0

(
− 1

(2)3n

)
zn.

as the Laurent expansion of f in A.
(b) Since B1(0) is a disc, we expect that the Laurent series will be a power

series, i.e. we expect an = 0 for n < 0. We have already seen in part (a)
that

1

z − 3
= −

∞∑
n=0

zn

3n+1

whenever |z| < 3, and in this is certainly true for z ∈ B1(0). Also, since
|z| < 1 in B1(0), the identity (∗) gives us

1

z − 1
= − 1

1− z
= −

∞∑
n=0

zn

for z ∈ B1(0). Using our partial fraction decomposition z/((z−1)(z−3)) =
−(1/2)/(z − 1) + (3/2)/(z − 3), we see that

f(z) =
1

2

∞∑
n=0

(
1− 1

3n

)
zn

for z ∈ B1(0).
(c) In part (a) we saw that

1

z − 1
=

∞∑
n=1

1

zn

whenever |z| > 1, and on D = {z | |z| > 3}, this condition is certainly
fulfilled, and so the above expansion is valid in D.
Next note that |z| > 3 in D, if we set w = 3/z then for z ∈ D, |w| < 1 and
hence (∗) applies to w. Thus

1

z − 3
=

1

z
· 1

1− w
=

1

z

∞∑
n=0

wn (from (∗))

=

∞∑
n=0

3n

zn+1

=

∞∑
n=1

3n−1

zn
.
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Now using the partial fraction decomposition of z/((z − 1)(z − 3)) we get

z

(z − 1)(z − 2)
=

∞∑
n=1

(3n − 1

2

)
z−n (|z| > 3).

2.2. Proof of Theorem 2.1.1. Let A be the annulus depicted in Figure 1, i.e.

A = {z ∈ C | r < |z − z0| < R}.

Let Cr be the circle of radius r centred at z0 and CR the circle of radius R centred at
z0. Orient both of them positively. We will show (soon) that the following formula
is true (for z ∈ A):

(2.2.1) f(z) =
1

2πi

∮
CR

f(ζ)

ζ − z
dζ − 1

2πi

∮
Cr

f(ζ)

ζ − z
dζ (z ∈ A).

Assume (2.2.1) is true. If ζ ∈ CR, and z ∈ A, then |z − z0| < R = |ζ − z0|. This
means |(z − z0)/(ζ − z0)| < 1. Therefore

(2.2.2)

1

ζ − z
=

1

(ζ − z0)− (z − z0)

=
1

ζ − z0
· 1

1− (z − z0)/(ζ − z0)

=

∞∑
n=0

(z − z0)n

(ζ − z0)n+1
(for ζ ∈ CR and z ∈ A)

since |(z − z0)/(ζ − z0)| < 1 for ζ ∈ CR and z ∈ A.
If on the other hand ζ ∈ Cr and z ∈ A, then |z − z0| > r = |ζ − z0|, which

means |(ζ − z0)/(z − z0)| < 1. In this case we have

(2.2.3)

1

ζ − z
=

1

(ζ − z0)− (z − z0)

= − 1

z − z0
· 1

1− (ζ − z0)/(z − z0)

= −
∞∑

n=0

(ζ − z0)n

(z − z0)n+1
(for ζ ∈ Cr and z ∈ A).

Arguing as we did in Lecture 18, one can show that for z ∈ A,

(2.2.4)

1

2πi

∮
CR

f(ζ)

ζ − z
dζ =

1

2πi

∮
CR

( ∞∑
n=0

(z − z0)n

(ζ − z0)n+1

)
f(ζ)dζ (from (2.2.2))

=

∞∑
n=0

{
1

2πi

∮
CR

f(ζ)

(ζ − z0)n+1
dζ

}
(z − z0)n

We have interchanged the sum
∑∞

n=0 with the integral
∮
CR

and this needs justi-

fication, and this is where the arguments from Lecture 18 for power series apply.
We do not want to revisit that, but for those interested in the technical issues, the
basic idea is that one chooses a smaller circle of radius r1 such that |z| < r1 < R,
and sets % = r1/R. Then % < 1 and hence for every ε > 0, there exists a num-
ber K ≥ 0 such that

∑∞
n=k+1 %

n < ε for all k ≥ K. It then follows easily that
8



∑∞
n=k+1|f(ζ)|/|ζ − z0|n+1 ≤Mε/(R− r1) for all k ≥ K where M is the maximum

of f(ζ) on CR.
Similarly, and once again omitting technical details involving the difficulties with

setting
∑∞

n=0

∮
=
∮ ∑∞

n=0 (this time one has to choose a circle C of radius r1 such
that r < r1 < |z| and set % = r/r1), one sees, using (2.2.3) that

(2.2.5)

1

2πi

∮
Cr

f(ζ)

ζ − z
dζ =

∞∑
n=0

{
1

2πi

∮
Cr

f(ζ)(ζ − z0)ndζ

}
(z − z0)−n−1

=

−1∑
m=−∞

{
1

2πi

∮
Cr

f(ζ)(ζ − z0)−m−1

}
(z − z0)m

Finally if C is any simple loop in A with z0 in the interior, then CR and Cr can
both be deformed in A to C, whence

1

2πi

∮
CR

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∮
C

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∮
Cr

f(ζ)

(ζ − z0)n+1
dζ

for all integers (positive or negative) n, since f(z)/(z − z0)n+1 is analytic on A.
From (2.2.4) and (2.2.5), we get the theorem—provided we prove (2.2.1).

We now prove (2.2.1). Pick a small circle C around z lying wholly in A, as in
the right side of Figure 2. As usual, give it positive orientation, as shown in the
picture.

Figure 2. The direction shown on the smaller circle is negative,
which is why the purple directed circles are labelled −Cr.

Next consider Figure 3. Here we introduce three line segments, one joining
CR and Cr (the line segment in red which is vertical), one path joining CR and C
(again in red) and one joining Cr and C (yet again in red).

Let ΓL be the simple loop bounding coloured region on the picture of the annulus
on the left in Figure 4, and ΓR the corresponding loop bounding the coloured
region on the picture of the annulus on the right. The orientations we give are the
positive orientations, as shown in the pictures.
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Figure 3. Dividing A into three simply connected subdivisions.

It is clear that for any function g, continous on ΓL and ΓR we have∫
CR

g(ζ)dζ −
∫
Cr

g(ζ)dζ −
∫
C

g(ζ)dζ =

∫
ΓL

g(ζ)dζ +

∫
ΓR

g(ζ)dζ.

Since f(ζ)/(ζ − z) is analytic in in the interior of ΓL and ΓR we have the relation∫
ΓL
f(ζ)/(ζ − z)dζ +

∫
ΓR
f(ζ)/(ζ − z)dζ = 0, whence∫

CR

f(ζ)

ζ − z
dζ −

∫
Cr

f(ζ)

ζ − z
dζ −

∫
C

f(ζ)

ζ − z
dζ = 0

Finally, we know that (2πi)−1
∫
C
f(ζ)/(ζ − z)dζ = f(z) (from the Cauchy Integral

Formula). This proves (2.2.1).

Figure 4. On the picture on the left, the yellow region is bounded
by ΓL, and on the picture on the right, the yellow region is bounded
by ΓR. The orientations of the simple loops ΓL and ΓR are positive.
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Appendix A. Radius of Convergence

We will prove the following result

Theorem A.1. Let

∞∑
n=0

an(z − z0)n be a power series, and suppose lim
n→∞

|an|1/n

exists. Then the radius of convergence R of the given power series is given by the
formula

R =
1

lim
n→∞

|an|1/n

with the understanding that if lim
n→∞

|an|1/n = 0, then R =∞.

Proof. It is sufficient to prove the statement for z0 = 0 and we will assume this.
Let L = lim

n→∞
|an|1/n. Let us first consider the case where L 6= 0. Suppose |z| <

1/L. Then |z|L < 1. Pick ε > 0 so that |z|L+ ε < 1. Since |z|L = lim
n→∞

(|z||an|1/n),

we have a non-negative integer N such that ||z||an|1/n − |z|L| < ε for all n ≥ N .
This means that |z||an|1/n < |z|L+ ε < 1 for all n ≥ N . Thus for n ≥ N

|anzn| ≤ (|z|L+ ε)n.

Since 0 < |z|L+ ε < 1, it follows that
∑∞

n=N (|z|L+ ε)n is convergent. By Theorem
A.5 of Lecture 18, it follows that

∑∞
n=0an(z − z0)n is convergent.

If L = 0, then limn→∞|z||an|1/n = 0 for every z ∈ C. This means there exists
N ≥ 0 such that |z||an|1/n < 1− ε for all n ≥ N . Arguing as above, we see that in
this case

∑∞
n=N |anzn| is convergent, since |anzn| < (1− ε)n.

Next suppose z ∈ C is such that |z| > 1/L (if L = 0, there is no such z). We have
to show that

∑
n≥0 anz

n diverges. We will argue by contradiction. Suppose the

series converges. Then in Lecture 18, we showed that for all w such that |w| < |z|,
the series

∑
n≥0|anwn| is convergent. Pick w such that L−1 < |w| < |z|. It follows

that |w|L > 1. Let ε > 0 be such that |w|L > 1 + ε. Then there exists N ≥ 0 such
that |w||an|1/n > 1 + ε for all n ≥ 1. Then

∑
n≥N |anwn| ≥

∑
n≥N (1 + ε)n = ∞.

Thus
∑

n≥0 anw
n is not absolutely convergent giving a contradiction. �
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