
LECTURE 18

Date of Lecture: March 22, 2022

Throughout this lecture, Br(z0) will denote the open circular neighbourhood
(a.k.a. open disc) of radius r centred at z0, i.e.

(1) Br(z0) = {z ∈ C | |z − z0| < r}.
The circle of radius r centred at r0 is denoted Cr(z0).

(2) Cr(z0) = {z ∈ C | |z − z0| = r}.
Finally the closed disc of radius r centred ar z0 is

(3) Br(z0) = {z ∈ C | |z − z0| ≤ r} = Br(z0) ∪ Cr(z0).

1. Power Series

1.1. Radius of Convergence. Let z0 ∈ C. An infinite series of the form

(1.1.1)

∞∑
n=0

an(z − z0)n

is called a power series at z0. Suppose the series converges at z = z1 6= Z0. Let
s = |z1 − z0|. Note that since z1 6= z0, s > 0. Since the series

∑∞
n=0 an(z1 − z0)n

converges, therefore the sequence {an(z1− z0)n} is bounded, i.e. there exists a real
number D such that |an(z1 − z0)n| ≤ M for all n ≥ 0 (see Theorem A.2 in the
appendix).

Let r be a positive number strictly less than s. Let % = r/s. Note that 0 ≤ % < 1.

Figure 1.

Now suppose z is point in the disc Br(z0) (see Figure 1). Then

(1.1.2) |an(z − z0)n| = |an(z1 − z0)n||(z − z0)n/(z1 − z0)n| ≤ D%n.
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Since 0 ≤ % < 1, it follows that
∑∞
n=0 %

n = 1/(1 − %) < ∞, i.e.
∑∞
n=0 %

n is
convergent. By Theorem A.5 it follows that

∑∞
n=0|an(z − z0)n| is convergent, i.e.∑∞

n=0 an(z − z0)n is absolutely convergent.
Let S = {s ∈ [0,∞) | for some z ∈ Cs(z0),

∑∞
n=0 an(z − z0)n}. Here, Cs(z0) is

as in (2). In other words Cs(z0) is the circle of radius s centred at z0. From what
we have have proved, if s ∈ S, then

∑∞
n=0 an(z − z0)n converges for all z in the

disc Bs(z0). In other words, if s ∈ S, then r ∈ for all 0 ≤ r ≤ s. This means S is
an interval, and hence is of the form [0, b), [0, b] with b ∈ R, or [0, ∞). We define
a number R as follows. In the first two cases, set R = b, and in the last case, set
R =∞.
R as defined above is called the radius of convergence of

∑∞
n=0 an(z − z0)n.

Note that R could be 0 or ∞. It has the property that if |z − z0| < R, then∑∞
n=0 an(z − z0)n converges and if |z − z0| > R, then

∑∞
n=0 an(z − z0)n diverges

(i.e. it does not converge). We therefore have the following result

Proposition 1.1.3. Let
∑∞
n=0 an(z − z0)n be a power series centred at z0. There

exists R ∈ [0, ∞] (with 0 and ∞ included), called the radius of convergence of∑∞
n=0 an(z − z0)n, such that if |z − z0| < R then

∑∞
n=0 an(z − z0)n converges, and

if |z − z0| > R, then
∑∞
n=0 an(z − z0)n diverges.

Remark 1.1.4. The open disc BR(z0) centred at z0 is called the disc of conver-
gence. We cannot say anything about the behaviour of

∑∞
n=0 an(z − z0)n on the

circle CR(z0).

Figure 2. The power series
∑
n≥0 an(z − z0)n converges inside

the disc BR(z0), diverges outside. On the circle CR(z0), it might
converge at some points and diverge at others.

Now assume R > 0. Let r be such that 0 ≤ r < R. Pick s such that r < s < R.
Note that since 0 ≤ r < s < R, both r and s are in S. As before, set % = r/s, so
that 0 ≤ % < 1. The inequality (1.1.2) gives us another very important inequality,
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namely:

(1.1.5)

∣∣∣∣∣
∞∑

n=k+1

an(z − z0)n

∣∣∣∣∣ ≤
∞∑

n=k+1

|an(z − z0)n|

≤
∞∑

n=k+1

D%n

= D%k+1
∞∑
n=0

%n

= D
ρk+1

1− ρ
.

for all z ∈ Br(z0). The crucial point is that (1.1.5) is true for every z in the closed
disc Br(z0). Now clearly limk→∞D%k+1/(1− %) = 0, since 0 ≤ % < 1. This means

given ε > 0, there exists a non-negative integer K such that D ρk+1

1−ρ < ε for all

k ≥ K. By (1.1.5) we get

(1.1.6)

∣∣∣∣∣
∞∑

n=k+1

an(z − z0)n

∣∣∣∣∣ < ε, k ≥ K, z ∈ Br(z0).

The important point is that K depends only on ε and not on z ∈ Br(z0).

Theorem 1.1.7. Let R be the radius of convergence of
∑∞
n=0 an(z − z0)n, and

suppose R > 0. Define f : BR(z0) → C by the formula f(z) =
∑∞
n=0 an(z − z0)n.

Then

(a) f is analytic on the disc of convergence BR(z0).
(b) For z in the disc of convergence BR(z0), the derivative of f is given by term

by term differentiation, i.e.

f ′(z) =

∞∑
n=1

nan(z − z0)n−1 =

∞∑
n=0

an+1(z − z0)n (z ∈ BR(z0).

(c) f (n)(z0) = n!an.

Proof. For (a) the strategy is to first show that f is continuous on BR(z0) and
then use Morera’s theorem to prove analyticity. Let us carry out this strategy. Let
w ∈ BR(z0). Let us show that f is continuous at z = w. First, we know that
|w| < R. Let r be a number such that |w| < r < R. Let ε > 0 be given. We know,
from (1.1.6) that there exists a non-negative integer K such that

(∗)

∣∣∣∣∣
∞∑

n=k+1

an(z − z0)n

∣∣∣∣∣ < ε,

for k ≥ K and every z ∈ Br(z0). Let P (z) be the polynomial

P (z) =

K∑
n=0

an(z − z0)n.

Since P is a polynomial, it is continuous. This means there exits δ > 0 such that

(∗∗) |P (z)− P (w)| < ε,
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for every z such that |z − w| < δ. This gives, using (∗) and (∗∗),
|f(z)− f(w)| = |(f(z)− P (z)) + (P (z)− P (w)) + (P (w)− f(w)|

≤ |f(z)− P (z)|+ |P (z)− P (w)|+ |f(w)− P (w)|

=

∣∣∣∣∣
∞∑

n=K+1

an(z − z0)n

∣∣∣∣∣+ |P (z)− P (w)|+

∣∣∣∣∣
∞∑

n=K+1

an(w − z0)n

∣∣∣∣∣
< ε+ ε+ ε = 3ε

for every z such that |z − w| < δ. Thus f is continuous.
We now prove analyticity. Let Γ be an closed loop in the disc of convergence

BR(z0). Let r be a number such that 0 < r < R and Γ lies in the disc Br(z0). Let
ε > 0 be given. Then we have a non-negative integer K such that the inequality

(1.1.6) is true for all k ≥ K and all z ∈ Br(z0). As before let P (z) =
∑K
n=0 an(z −

z0)n. Since P is a polynomial, therefore it is analytic, and hence by Cauchy’s
Integral Theorem

∫
Γ
P (z)dz = 0. We thus have∣∣∣∣∣

∫
Γ

f(z)dz

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γ

f(z)dz −
∫

Γ

P (z)dx

∣∣∣∣∣ ≤
∫

Γ

∣∣∣∣∣
∞∑

n=K+1

an(z − z0)n

∣∣∣∣∣dz ≤ ε`(Γ).

Thus, for every ε > 0, |
∫

Γ
f(z)dz| ≤ ε`(Γ). This means

∫
Γ
f(z)dz = 0. By Morera’s

Theorem (see Theorem 1.1.6 of Lecture 16), f is analytic.
Let us now prove (b). It is enough to prove the formula for z ∈ Bc(z0) for every

0 ≤ c < R. Fix c as above and let z ∈ Bc(z0). Choose r such that 0 ≤ c < r < R,
Let ε > 0 be given. We can find a non-negative integer such that (1.1.6) holds for
all k ≥ K and all points in Br(z0). For k ≥ K, let Pk be the polynomial

Pk(z) =

k∑
n=0

an(z − z0)n.

Observe that if ζ ∈ Cr(z0) and z ∈ Bc(z0), then |ζ − z| > r − c and hence

(#)
1

|ζ − z|2
<

1

(r − c)2
.

For k ≥ K and z ∈ Bc(z0) we have

|f ′(z)−
k∑

n=1

nanz
n−1| = |f ′(z)− P ′k(z)|

=

∣∣∣∣∣ 1

2πi

∮
Cr(z0)

f(ζ)

(ζ − z)2
dζ − 1

2πi

∮
Cr(z0)

Pk(ζ)

(ζ − z)2
dζ

∣∣∣∣∣
≤

∣∣∣∣∣ 1

2πi

∮
Cr(z0)

f(ζ)− Pk(z)

(ζ − z)2
dζ

∣∣∣∣∣
≤ 1

2π

∮
Cr(z0)

∣∣∣∣∣
∑∞
n=k+1 an(z − z0)n

(ζ − z)2

∣∣∣∣∣dζ
<

ε

2π(r − c)2
(2πr) =

εr

(r − c)2
(by (1.1.6)) and (#)

By definition of limits this means limk→∞
∑k
n=1 nanz

n−1 = f ′(z). Thus f ′(z) =∑∞
n=1 nanz

n−1, which is what we were asked to prove.
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Part (c) follows from (b). �

1.2. Taylor and Maclaurin series. Let f be analytic on a domainD. Let z0 ∈ D.
The power series

(1.2.1)

∞∑
n=0

f (n)

n!
(z0)(z − z0)n

is said to be the Talyor series of f at z0. If z0 = 0, then the series is called the
Maclaurin series of f .

We will now show that the Taylor’s series for f at z0 converges in every open
disc centred at z0 and contained in D. Let Bs(z0) ⊂ D. To show convergence in
Bs(z0), it is enough to show show convergence in Br(z0) for all 0 ≤ r < s. Now
if 0 ≤ r < s, then the closed disc Br(z0) is contained in D. Thus it is enough to
prove convergece of the Taylor’s series (1.2.1) for closed discs contained in D and
centred at z0. Therefore, without loss of generality, assume Bs(z0) ⊂ D, and let us
prove the convergence of (1.2.1) on Bs(z0).

Without loss of generality, let z0 = 0. Let z ∈ Bs(0). Pick r such that |z| < r < s.
Let % = r/s < 1. Then for every ζ ∈ Cr(0), we have |z/ζ| < % < 1. Since 0 ≤ % < 1,
we have that the series

∑∞
n=0 %

n converges and in fact
∑∞
n=0 %

n = 1/(1 − %). By
part (c) of Theorem A.4, this means that limk→∞

∑∞
n=k+1 %

n = 0.
Now suppose ε > 0 is given. By definition of a limit, the above shows that there

exists a non-negative integer K such that

(1.2.2)

∣∣∣∣∣
∞∑

n=k+1

%n

∣∣∣∣∣ < ε, for all k ≥ K.

Next let ζ ∈ Cr(0). Then, as |z/ζ| < % < 1, we have

f(ζ)

ζ − z
=
f(ζ)

ζ

1

(1− (z/ζ))
=
f(ζ)

ζ

∞∑
n=0

(z/ζ)n =

∞∑
n=0

f(ζ)

ζn+1
zn.

Let M be the maximum value of |f(ζ)| for ζ on the circle Cr(0). From (1.2.2), we
see that for k ≥ K, and ζ ∈ Cr(0)

(1.2.3)

∣∣∣∣∣ f(ζ)

ζ − z
−

k∑
n=0

f(ζ)

ζn+1
zn

∣∣∣∣∣ =

∣∣∣∣∣f(ζ)

ζ

∞∑
n=k+1

(z/ζ)n

∣∣∣∣∣ ≤ M

r

∞∑
n=k+1

%n < Mε/r.

Thus

|f(z)−
k∑

n=0

(f (n)(0)/n!)zn| =

∣∣∣∣∣ 1

2πi

∮
Cr(0)

(
f(ζ)

ζ − z
−

k∑
n=0

f(ζ)

ζn+1
zn

)
dζ

∣∣∣∣∣
< Mε(2πr)/(2πr)

= Mε

for k ≥ K. Thus

f(z) =

∞∑
n=0

f (n)(0)

n!
zn

for all z ∈ Br(0).
There was nothing special about z0 = 0. The above computations give:
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Theorem 1.2.4. Let f be analytic on a domain D. Let z0 ∈ D. Let Br(z0)
be an open disc centred at z0 such that Br(z0) ⊂ D. Then the Taylor series∑∞
n=0(f (n)(z0)/n!)(z − z0)n converges in Br(z0) and

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n

for z ∈ Br(z0).

Appendix A. Basic results on convergence

In this appendix we gather together the results we need on convergence of se-
quences and series. This is for ready reference. You are expected to have seen these
results in earlier courses, at least when the sequences and series in question were
over the real numbers. The same proofs work over complex numbers. You won’t
be tested on these, but you might be expected to use the results to prove results
about power series, contour integrals, etc.

Definitions A.1. Let {xn} be a sequence of complex numbers and
∑∞
n=0 cn an

infinite series of complex numbers.

1. The sequence {xn} is said to be bounded if there exists a real number M < ∞
such that |xn| ≤M for all n.

2. It is said to be convergent if it has a limit. Recall that this means there is
complex number L such that for every ε > 0, there exists N ≥ 0 such that
|xn − L| < ε for every n ≥ N . In this case we say L is the limit of {xn} as n
approaches infinity, and write limn→∞ xn = L.

3. It is said to be a Cauchy sequence, if given ε > 0, there exists N ≥ 0 such that
|xn − xm| < ε for all n ≥ N .

4. The series
∑∞
n=0 cn is said to converge if the sequence {sn} defined by sn =∑n

k=0 ck = c0 + · · ·+ cn converges. The number sn is called the nth partial sum
of the series

∑∞
n=0 cn. If c = limn→∞ sn, we say that the infinite series

∑∞
n=0 cn

converges to c and in this case we write
∑∞
n=0 cn = c. The number c is called

the sum of the series
∑∞
n=0 cn, or more understandably, the sum of the cn as n

varies over the non-negative integers.
5. The series

∑∞
n=0 cn is said to be absolutely convergent if the series

∑∞
n=0|cn| is

convergent. In Theorem A.5, it is shown that an absolutely convergent series is
convergent. The other way around may not be true.

Theorem A.2. If {xn} is a convergent sequence, then it is bounded.

Proof. Let L = limn→∞ xn. Take ε = 1. There exists N ≥ 0 such that |xn − L| < ε
for n ≥ N . Since |xn| − |L| ≤ |xn − L|, we see that |xn| − |L| < ε for n ≥ N , which
in turn means that |xn| < |L| + ε for n ≥ N . On the other hand, the finite set
{x0, x1, . . . , xN1

} is clearly bounded, for example by m = max{|x0|, |x1|, . . . , |xN1
|}.

Let M = max{m, |L|+ ε}. It is clear that |xn| ≤ M for all n ≥ 0. Thus the given
sequence is bounded. �

Theorem A.3. A sequence is convergent if and only if it is Cauchy.

Proof. Suppose {xn} is convergent, and let limn→∞ xn = L (say). Given ε > 0,
there exists N ≥ 0 such that |xn − L| < ε/2. Now suppose n,m ≥ N . Then
|xn − xm| = |(xn − L)− (xm − L)| ≤ |xn − L| + |xm − L| < ε/2 + ε/2 = ε. Thus
{xn} is Cauchy.
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The proof of the converse is omitted. Itrequires a fundamental property of the
real numbers (the so called “least upper bound property”). In some approaches,
the convergence of Cauchy sequences is built into the definition of real numbers
(this is Cantor’s approach to the construction of the real numbers). �

Theorem A.4. Let
∑∞
n=0 cn be a convergent series, say

∑∞
n=0 cn = c.

(a) For k ≥ 0, the series
∑∞
n=k cn = c−

∑k−1
n=0 cn, i.e. the series

∑∞
n=k cn converges

and its sum is c−
∑k−1
n=0 cn.

(b) The sequence {cn} converges to zero, i.e. limn→∞ cn = 0.
(c) limk→∞

∑∞
n=k cn = 0.

Proof. Part (a) is obvious.
For (b), note that if {sn} is the sequence of partial sums of

∑
n≥0 cn, then

cn = sn − sn−1. Then limn→∞ cn = limn→∞ sn − limn→∞ sn−1 = c− c = 0.

Part (c) is seen as follows. We have
∑∞
n=k cn = c −

∑k−1
n=0 cn. Letting k → ∞,

we see that
∑∞
n=k cn → c− limk→∞

∑k−1
n=0 cn = c− c = 0. �

Theorem A.5. Let
∑∞
n=0 cn and

∑∞
n=0 rn be infinite series of complex numbers

such that rn is real for all n, and |cn| ≤ rn for every n ≥ 0. Suppose
∑∞
n=0 rn is

convergent. Then
∑∞
n=0 cn is convergent. In particular, an absolutely convergent

series is convergent (take rn = |cn|).

Proof. Let {sn} be the sequence of partial sums for
∑∞
n=0 cn and {σn} the sequence

of partial sums for
∑∞
n=0 rn. In other words, let sn = c0 + · · · + cn and σn =

r0 + . . . + rn. Since
∑∞
n=0 rn is convergent, the sequence {σn} is convergent. By

Theorem A.3, it is Cauchy. thus, given ε > 0, there exists N ≥ 0 such that
|σn − σm| < ε for m,n ≥ N . Without loss of generality, we may let m ≤ n. Then
sn − sm =

∑n
k=m ck and σn − σm =

∑n
k=m rk. Thus

|sn − sm| = |
n∑

k=m

ck| ≤
n∑

k=m

|ck| ≤
n∑

k=m

rk = |σn − σm| < ε

for n,m ≥ N . This means {sn} is Cauchy, and hence by Theorem A.3, {sn} is
convergent. By definition, this means that the infinite series

∑∞
n=0 cn is convergent.

�
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