
LECTURE 17

Date of Lecture: March 17, 2022

1. Some examples of Contour Integration

1.1. Recall the following formula from the last lecture, where Γ is a simple loop,
z a point in the interior of Γ, and f a function analytic at each point of Γ and in
the interior of Γ.

(1.1.1) f (n)(z) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ

1. Let Γ be a simple loop in C. Evaluate
∫

Γ

e2z

(z − w)5
dz for w /∈ Γ.

Solution: Let f(z) = e2z. Suppose first that w in in the interior of Γ. By
(1.1.1),

∫
Γ
f(z)/(z − w)5dz = ((2πi)/(4!))f (4)(w), and hence∫
Γ

e2z

(z − w)5
dz =

2πi

24

d4

dz4
e2z

∣∣∣∣∣
z=w

=
2πi

24
(24)e2w =

4π

3
e2w.

If w is in the exterior of Γ, by the Cauchy Integral Theorem,∫
Γ

e2z

(z − w)5
dz = 0.

Thus

∫
Γ

e2z

(z − w)5
dz =


4π

3
e2w if w is in the interior of Γ

0 if w is in the exterior of Γ.

2. Let Γ be a simple loop in C. Evaluate
∫

Γ

z7 + 3z6 + 2z + 1

(z − w)7
dz for w /∈ Γ.

Solution: If w is in the interior of Γ, then following the techinique of the
previous example we see that∫

Γ

z7 + 3z6 + 2z + 1

(z − w)7
dz =

2πi

6!

d6

dz6
(z7 + 3z6 + 2z + 1)

∣∣∣∣∣
z=w

=
2πi

6!
((7!)w + 3(6!)) = (2πi)(7w + 3).

If w is in the exterior of Γ, the given integral is zero by the Cauchy Integral
Theorem. So∫

Γ

z7 + 3z6 + 2z + 1

(z − w)7
dz =


(2πi)(7w + 3) if w is in the interior of Γ

0 if w is in the exterior of Γ.
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2. The maximum modulus property

2.1. The averaging property. Let z0 ∈ C, R a positive number, and f function
analytic in the disc B given by |z − z0|R and at every point of the circle C given by
|z − z0| = R. We orient C positively. By the Cauchy Integral formula, giving we
have f(z0) = 1/(2πi)

∫
C
f(z)/(z−z0)dz. Using the parametrization z(t) = z0+Reit,

t ∈ [0, 2π] for C, we see that f(z0) = (2πi)−1
∫ 2π

0
f(z0 + Reit)/(Reit)(iReit)dt =

1/(2π)
∫ 2π

0
f(z0 +Reit)dt. In other words

(2.1.1) f(z0) =
1

2π

∫ 2π

0

f(z0 +Reit)dt.

In other words the value of f at the centre of the circle C is the average of the value
of f on the circle. This is known as the averaging property of analytic functions.

Suppose M = max{|f(z)| | z ∈ C}. Then |f(z0)| ≤ 1
2π

∫ 2π

0
|f(z0 +Ree

it)|dt ≤
1

2πM
∫ 2π

0
dt = M . Thus

(2.1.2) |f(z0)| ≤ max
z∈C
|f(z)|.

Theorem 2.1.3. (The Maximum Modulus Principle) Let f be an analytic function
on a domain D. Suppose there is a point z0 in D such that |f | attains its maximum
at z0, i.e. |f(z)| ≤ |f(z0)| for all z ∈ D. Then f is constant on D.

Proof. From one of the homework problems (Problem 2.4.12 from the text) you
did, it is enough to prove that |f | is a constant. Let M = |f(z0)|. We claim that
|f(z)| = M for all z ∈ D. Let us first prove it in a neighbourhood of z0 in D.

Let R be a real number such that the closed circular neighbourhood of radius R
around z0 lies in D, i.e. R is chosen so that {z ∈ C | |z − z0| ≤ R} is contained in
C. Let C be the bounding circle, i.e. C = {z ∈ C | |z − z0| = R}. Suppose we have
a point ζ on the circle C such that |f(ζ)| 6= M . Since M is the maximum of |f | on
D, this means |f(ζ)| < M .

Let h(t) = |f(z0 +Reit)|, t ∈ [0, 2π]. Then h is continuous. Now ζ = z0 +Reiθ

for some θ ∈ [0, 2π]. Moreover, h(θ) = |f(z0 +Reiθ)| = |f(ζ)|. Since |f(ζ)| < M ,
we have h(θ) < M . By the continuity of h there is an interval I = [θ − δ, θ + δ]1

around θ on which h(t) < M . The average of h over [0, 2π] must be less than M ,
since the contribution to the average from the interval I is less than M , and there
is no way to compensate for this on the remaining part of the interval [0, 2π], for
h(t) cannot exceed M . In other words, in this case

M = |f(z0)| ≤ 1/(2π)

∫ 2π

0

|f(z +Reit)|dt = 1/(2π)

∫ 2π

0

h(t)dt < M.

i.e. M < M , which is a contradiction. It follows that |f(z)| = M for every point
on z on C. The same reasoning shows that |f(z)| = M on every circle centred at
z0 with radius less than or equal to R. It follows that |f(z)| = M for every z in the
circular neighbourhood of radius R centred at z0. All we require of the number R
is that the closed disc of radius R centred at z0 lies entirely in D.

Let U be the set of points w ∈ D such that |f(w)| = M . Then by the above
reasoning, around each point of U there is a circular neighbourhood lying entirely
in U , which means U is open.

1if θ = 0, I = [0, δ] and if θ = 2π, I = [2π − δ, 2π].
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Let V = {z ∈ D | |f(z)| < M}. Since |f | is continuous, it is easy to see that
V is also open, for if z in D is such that |f(z)| < M , then there is a circular
neighbourhood of z with the property that if w lies in this neighbourhood, then
|f(w)| < M . Now clearly U ∪ V = D and U ∩ V = ∅. From Theorem A.1 in the
appendix below, since U 6= ∅, we must have V = ∅, i.e. U = D. This means that
|f(z)| = M for every z ∈ D. We have therefore proved that |f | is a constant. As
mentioned above, by Problem 2.4.12 of the text, this means f is a constant. �

Appendix A.

Here is a slightly advanced result which is very useful. We have already used it
in the proof of the maximum modulus principle above.

Theorem A.1. Let D be a domain in C and U , V open subsets of D such that
U ∪ V = D and U ∩ V = ∅. Then either U or V is empty.

Proof. Define a function ϕ : D → R by the rule

ϕ(z) =

{
0 if z ∈ U
1 if z ∈ V .

Then ϕ is continuous, for, given a point z ∈ D we can find an open neighbourhood
of z on which ϕ is contant and hence continuous. Suppose U and V are both non-
empty. Pick z0 ∈ U and z1 ∈ V . Since D is a domain, we can find a continuous path
connecting z0 and z1, in other words, we can find a continuous function γ : [a, b]→ D
such that γ(a) = z0 and γ(b) = z1. Let h = ϕ ◦γ, i.e. let h : [a, b] → R be the
function given by the rule h(t) = ϕ(γ(t)) for t ∈ [a, b]. Then h is continuous, being
the composite of two continuous functions. Now, h(a) = 0 and h(b) = 1. Clearly,
for t ∈ [a, b], h(t) is either 0 or 1, and nothing in between. This contradicts the
Intermediate Value Theorem. Thus one of U or V must be empty. �
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