LECTURE 17

Date of Lecture: March 17, 2022

1. Some examples of Contour Integration

1.1. Recall the following formula from the last lecture, where I' is a simple loop,
z a point in the interior of I', and f a function analytic at each point of I' and in
the interior of T'.

(1.1.1) FM(2) = ;;/F(gf(f))nﬂdc

1. Let ' be a simple loop in C. Evaluate fr (6750& for w ¢ T.
P

w)
Solution: Let f(z) = e?*. Suppose first that w in in the interior of I'. By
(L1.1), [p f(2)/(z — w)®dz = ((2mi)/(41)) f ¥ (w), and hence
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— —dz = —¢% =
r (z —w)® 24 dz*
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If w is in the exterior of ', by the Cauchy Integral Theorem,
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/eidz =0.
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ZTe2w  if 4 is in the interior of T
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/eidz: 5
r (z —w)?

0 if w is in the exterior of I'.
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(24)e2v = ?Wem'

Z=w

Thus

2" 4+328 +2241
(z —w)’
Solution: If w is in the interior of I', then following the techinique of the

previous example we see that

/z7+3z6+2z+1dz_27rid6
r (z —w)” 6! dzf

_ %((wm +3(61)) = (2i) (Tw + 3).

2. Let T be a simple loop in C. Evaluate [ dz for w ¢ T.

(2" 4+32°+22+1)

zZ=w

If w is in the exterior of I', the given integral is zero by the Cauchy Integral
Theorem. So

(27m¢) (7w + 3) if w is in the interior of T’
dz =

0 if w is in the exterior of T'.

/z7—|—3z6—|—2z—|—1
r (z —w)”



2. The maximum modulus property

2.1. The averaging property. Let zp € C, R a positive number, and f function
analytic in the disc B given by |z — 29| R and at every point of the circle C given by
|z — z0| = R. We orient C positively. By the Cauchy Integral formula, giving we
have f(z0) = 1/(2ni) [, f(2)/(2—20)dz. Using the parametrization z(t) = zo+Re",
t € [0, 27] for C, we see that f(z) = (2mi)~! o% f(z0 + Re't)/(Re®)(iRe')dt =
1/(27) fozﬂ f(z0 + Re')dt. In other words

2m

(2.1.1) f(zo)zi i f(z0 + Re')dt.

In other words the value of f at the centre of the circle C' is the average of the value
of f on the circle. This is known as the averaging property of analytic functions.
27 @
Suppose M = max{|f(z)| | z € C}. Then |f(20)| < 5= [5 |f(20 + Re®?)|dt <
S M [P dt = M. Thus

(2.1.2) £ (o)l < max|f(2)].

Theorem 2.1.3. (The Maximum Modulus Principle) Let f be an analytic function
on a domain D. Suppose there is a point zy in D such that | f| attains its mazimum
at zo, i.e. |f(2)] <|f(20)| for all z € D. Then f is constant on D.

Proof. From one of the homework problems (Problem 2.4.12 from the text) you
did, it is enough to prove that |f| is a constant. Let M = |f(29)|. We claim that
|f(2)] = M for all z € D. Let us first prove it in a neighbourhood of zg in D.

Let R be a real number such that the closed circular neighbourhood of radius R
around zp lies in D, i.e. R is chosen so that {z € C | |z — 29| < R} is contained in
C. Let C be the bounding circle, i.e. C = {z € C | |z — 29| = R}. Suppose we have
a point ¢ on the circle C such that |f(¢)| # M. Since M is the maximum of |f| on
D, this means |f(¢)] < M.

Let h(t) = |f(z0 + Re)|, t € [0, 27r]. Then h is continuous. Now ¢ = zo + Re®
for some 6 € [0, 27r]. Moreover, h(0) = |f(z0 + Re'®)| = |f(¢)]. Since |f(¢)] < M,
we have h(f) < M. By the continuity of h there is an interval I = [0 — §,6 + 6]*
around 6 on which h(t) < M. The average of h over [0, 27r] must be less than M,
since the contribution to the average from the interval I is less than M, and there
is no way to compensate for this on the remaining part of the interval [0, 2], for
h(t) cannot exceed M. In other words, in this case

2

M =|f(z0)| §1/(27r)/0 W|f(z+Re“)|dt:1/(27r)/ h(t)dt < M.

0

i.e. M < M, which is a contradiction. It follows that |f(z)] = M for every point
on z on C. The same reasoning shows that |f(z)| = M on every circle centred at
zo with radius less than or equal to R. It follows that |f(z)| = M for every z in the
circular neighbourhood of radius R centred at zy. All we require of the number R
is that the closed disc of radius R centred at zg lies entirely in D.

Let U be the set of points w € D such that |f(w)| = M. Then by the above
reasoning, around each point of U there is a circular neighbourhood lying entirely
in U, which means U is open.

Lifg =0, I =1[0,8] and if § = 2, I = [27 — 6, 2n].
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Let V. ={z € D | |f(2)| < M}. Since |f] is continuous, it is easy to see that
V is also open, for if z in D is such that |f(z)] < M, then there is a circular
neighbourhood of z with the property that if w lies in this neighbourhood, then
|f(w)] < M. Now clearly UUV = D and UNV = (). From Theorem A.1 in the
appendix below, since U # @), we must have V = (), i.e. U = D. This means that
|f(2)] = M for every z € D. We have therefore proved that |f| is a constant. As
mentioned above, by Problem 2.4.12 of the text, this means f is a constant. (I

APPENDIX A.

Here is a slightly advanced result which is very useful. We have already used it
in the proof of the maximum modulus principle above.

Theorem A.1. Let D be a domain in C and U, V' open subsets of D such that
UUV =D and UNV ={(. Then either U or V is empty.

Proof. Define a function ¢: D — R by the rule

(z)— 0 ifzeU
PEZN dfsev

Then ¢ is continuous, for, given a point z € D we can find an open neighbourhood
of z on which ¢ is contant and hence continuous. Suppose U and V are both non-
empty. Pick zg € U and z; € V. Since D is a domain, we can find a continuous path
connecting zg and z1, in other words, we can find a continuous function ~: [a,b] — D
such that y(a) = zp and v(b) = z;. Let h = po~, ie. let h: [a,b] — R be the
function given by the rule h(t) = p(v(t)) for t € [a,b]. Then h is continuous, being
the composite of two continuous functions. Now, h(a) = 0 and h(b) = 1. Clearly,
for t € [a,b], h(t) is either 0 or 1, and nothing in between. This contradicts the
Intermediate Value Theorem. Thus one of U or V must be empty. ([
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