LECTURE 16

Date of Lecture: March 15, 2022

1. Infinite differentiability of analytic functions

1.1. A general formula for derivatives. Here is a more general setting than
what we had in the last lecture. Let T be a contour (not necessarily closed) and

¢o: ' —C

a continuous function on I'. On D = C \. T" define the functions F;,, one for each
non-negative integer n, as follows

(1.1.1) Fo(2) = /F @f’(f){mdq, 2 ¢T.
Theorem 1.1.2. F, is analytic on C T for every n > 0, and for such n, the
following formula holds
Fl(2) = (n+1)F41(2) zeC\T.
In particular Fy is infinitely differentiable on C T and for n >0
F{"M(2) = nlF,(2) ze C\T.

Proof. The second formula follows from the first in an obvious. We will now prove
the first formula (at least for n = 0).
Pick z € C\T'. There exists a circular neighbourhood z,

B={weC||w—z <r},

such that B lies in C \ T, and further the circle C, = {w | |w —z| = r} also
lies in C ~ I". Since T is closed and bounded and the closed disc B = B U C,
is also closed and bounded, we have positive real numbers § and A defined by
§ = min{|[¢ —w| | (€T, we B} and A = max{|¢ —w| | ( €T, we B}. Then
0<d<A<oo. Let

(%) M = max|(C]-

We will show that Fy is differentialble in C \ T and that Fj; = F; on this set. To
that end, here are some computations.
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Pick h so that |h| < r. This means z + h lies in B. For such h, by definition
of §, | —z—h| > 6. We also have, since z € B, | —z| > §. This means that
|(¢ = 2)%(¢ — 2 — h| > &% and hence

1 1 1 1 - ‘h|
(%) h C—Z—h_C—Z _(C—Z)Q S5
Using (%) and (x*) we get

1 Q) s e |_
(T) h{CZh_cZ}_(CZ)Q < 5
This means

60 s 6 hM
/r[h{C—z—h C—z} (§_2)2]d4 S {(T).

Unravelling the above inequality, we get, for h such that] |h| < r, the following

inequality.

F0(2+h) —Fo(Z) < |h‘M
h - 5

Letting h — 0, we see that Fj exists on C N\ T', and on this set, Fjj(z) = F1(z).
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FIGURE 1. I" need not be a loop. The point z is the centre of
the circle C,. of radius r, and h is chosen so that |h| < r so that
z+ h lies inside the circle, i.e. in the disc B. The shortest distance
between I' and C,. is 4.

— Fy(2) /().

The same technique works for n > 1 too. The details are left to you. For
example, one can show that

1 1 1 2 3¢ —2)h— 2h2
W h{<<—z—h>2 - (c—z>2} C—2F ~ -2 hPC— 2
By the triangle inequality, one gets
3(¢ — z)h — 2h? < (3A + 2]h|)|h|
(C—z—h)P(C—2)*~ ° '
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From here one sees (by multiplying the expressions on both sides of (1) by ¢(¢) and
then intgrating over I') that
Fi(z+h)— Fi(z)
h

(3A + 2|A)) ||
0ty

— 2F2(Z) S

from which it is easy to see (by letting h — 0) that F| exists and equals 2F5 on
C \T'. The general case is similar.

For a very elegant proof without messy computations (but requiring some math-
ematical maturity to read) see [A, p.121, Lemma 3] O

From Theorem 1.1.2 we deduce the following result.

Theorem 1.1.3. Let I" be. simple loop and f a function which is analytic in the
interior of I' and on all point of I'. Then f is infinitely differentiable in the interior

of T and
Wy ™[O
) =50 [ 3

©2mi Jp (C— 2)n L
for all z in the interior of T'.

Proof. In the statement of Theorem 1.1.2, take ¢ to be the function 1/(2mi)f,
restricted to I'. By Cauchy’s integral formula Fy = f in the interior I". The rest
follows from Theorem 1.1.2 O

Theorem 1.1.4. Let f be analytic on a domain D. Then f is infinitely differen-
tiable on D.

Proof. Let z be a point in D. Pick a circular neighbourhood B of z such that B

and the bounding circle C' of B lie in D. Then in B, from Theorem 1.1.3, f is

infinitely differentiable. Since the property of being infinitely differentiable is local,

f is infinitely differentiable. O
The following corollary is immediate.

Corollary 1.1.5. Let D be a domain, [ a function on D which has an antideriv-
atiwe. Then f is analytic on D.

Proof. Let F' be an antiderivative of f on D. Then F is infinitely differentiable

according to Theorem 1.1.4. In particular F’ is analytic on D. Since f = F’ we

are done. d
Corollary 1.1.5 gives us a well known theorem known as Morera’s Theorem.

Theorem 1.1.6. (Morera’s Theorem)Let f be a continuous function on a domain
D such that [ f(z)dz =0 for every loop T in D. Then f is analytic.

Proof. The condition on f is equivalent to saying f has an antiderivative in D (see
Theorem 2.1.2 in Lecture 13). By Corollary 1.1.5, f is analytic on D. (]

2. Liouville’s Theorem and the Fundamental Theorem of Algebra

2.1. The Cauchy estimates. Let z € C and let Bg = Bg(z) be the circular
neighbourhood B = {w € C | |lw — 2| < R}, and Cr = {( € C | |¢ — 2| = R} the
bounding circle of Br. Suppose f is analytic on B and also at each point of Cg.
From Theorem 1.1.3, we get
!
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Let M be the maximum of | f(¢)| as ¢ varies over Cg. Then, for ¢ € Cg, |f(¢)/(¢ — 2)" Tt =

|£(¢)/R"1Y < M/R™1. 1t follows that
I M nl M nI!M
M) < 2 22 X _
FM (@) < o it t(Cr) = oo 2mR = -

The inequalities (one for each n > 0)

n!M
Rn

(2.1.1) F™(2)] <
are called the Cauchy estimates.

2.2. Liouville’s Theorem. The Cauchy estimates are very useful. They give us
Lousiville’s Theorem which says that a non constant entire function cannot be
bounded. Recall that a function f is said to be bounded in its domain D if there
exists a number M such that |f(z)] < M for all z € D. We state Lousville’s
Theorem in the following form:

Theorem 2.2.1. (Louisville’s Theorem) Suppose f is an entire bounded function.
Then f is a constant.

Proof. For z € C, let C'r be the circle of radius R centred at z, oriented in the
positive direction. Since f is bounded, there exists a number M such that |f(z)] <
M for z € C. Therefore by the Cauchy estimates

M
/
< —.
7)< 5
Let R — oo. We see that |f/(z)| = 0, i.e. f(2) = 0. Since z € C was chosen
arbitrarily, f’ vanishes at every point of C. Thus f is a constant. O

2.3. The Fundamental Theorem of Algebra. Let
(2.3.1) p(z)=ap+a1z+ -+ a,z"

be a polynomial of degree n. This means a, # 0. Suppose further that p is not a
constant polynomial, i.e. suppose n > 1. Then a famous theorem of Gauss says that
the equaltion p(z) = 0 has at least one solution. This is the so called Fundamental
Theorem of Algebra.

Theorem 2.3.2. (The Fundamental Theorem of Algebra) Let p be a polynomial
with complex coefficients with degree of p at least 1. Then there exists a complex
number w such that p(w) = 0, i.e. the equation p(z) = 0 has at least one solution.

Proof. Write p as in (2.3.1). We know that a,, # 0. Now, on C \ {0},

p(z):z”<%+ a2 ++an>

n an— 1

As z — o0, the expression in parentheses approaches a,, # 0. Since z" — oo as
z — 00, the limit of p(z) as z approaches oo is of the form oo - a,, in other words
lim, o p(2) = co. This means, there exists R > 0 such that |p(z)| > 1 for all z
such that |z| > R.

Suppose there are no solutions to the equation p(z) = 0. Then




is entire. It follows that it is bounded on the closed and bounded set of point in the
closed ball B of radius R centred at z = 0. In other words, there exists My such that
|f(2)| < My for all z such that |z| < R. On the other hand, since |p(z)| > 1 when
|z| > R, we have |f(z)] <1 for z such that |z] > R. If we set M = max{My, 1},
then we get
lf(2)] < M, z € C.

Thus f is bounded. By Louisville’s theorem, f is a constant. This means p is a
constant. However, the degree of p is n which is greater than 1, and so p(")(z) =
an # 0, which means p is not a constant. This is a contradiction. Hence there
exists a solution to the equation p(z) = 0.

FIGURE 2. Outside the disc, |p(z)| > 1, and inside the disc,
|f(2)] < Mo.
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