
LECTURE 16

Date of Lecture: March 15, 2022

1. Infinite differentiability of analytic functions

1.1. A general formula for derivatives. Here is a more general setting than
what we had in the last lecture. Let Γ be a contour (not necessarily closed) and

φ : Γ −→ C
a continuous function on Γ. On D = C r Γ define the functions Fn, one for each
non-negative integer n, as follows

(1.1.1) Fn(z) :=

∫
Γ

φ(ζ)

(ζ − z)n+1
dζ, z /∈ Γ.

Theorem 1.1.2. Fn is analytic on C r Γ for every n ≥ 0, and for such n, the
following formula holds

F ′n(z) = (n+ 1)Fn+1(z) z ∈ Cr Γ.

In particular F0 is infinitely differentiable on Cr Γ and for n ≥ 0

F
(n)
0 (z) = n!Fn(z) z ∈ Cr Γ.

Proof. The second formula follows from the first in an obvious. We will now prove
the first formula (at least for n = 0).

Pick z ∈ Cr Γ. There exists a circular neighbourhood z,

B = {w ∈ C | |w − z| < r},
such that B lies in C r Γ, and further the circle Cr = {w | |w − z| = r} also
lies in C r Γ. Since Γ is closed and bounded and the closed disc B = B ∪ Cr
is also closed and bounded, we have positive real numbers δ and ∆ defined by
δ = min{|ζ − w| | ζ ∈ Γ, w ∈ B} and ∆ = max{|ζ − w| | ζ ∈ Γ, w ∈ B}. Then
0 < δ < ∆ <∞. Let

(∗) M = max
ζ∈Γ
|φ(ζ|.

We will show that F0 is differentialble in CrΓ and that F ′0 = F1 on this set. To
that end, here are some computations.

1

h

{
1

ζ − z − h
− 1

ζ − z

}
− 1

(ζ − z)2
=

1

h

(ζ − z)− (ζ − z − h)

(ζ − z)(ζ − z − h)
− 1

(ζ − z)2

=
1

(ζ − z)(ζ − z − h)
− 1

(ζ − z)2

=
(ζ − z)− (ζ − z − h)

(ζ − z)2(ζ − z − h)

=
h

(ζ − z)2(ζ − z − h)
.
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Pick h so that |h| < r. This means z + h lies in B. For such h, by definition
of δ, |ζ − z − h| > δ. We also have, since z ∈ B, |ζ − z| > δ. This means that
|(ζ − z)2(ζ − z − h| > δ3 and hence

(∗∗)

∣∣∣∣∣ 1h
{

1

ζ − z − h
− 1

ζ − z

}
− 1

(ζ − z)2

∣∣∣∣∣ ≤ |h|δ3
.

Using (∗) and (∗∗) we get

(†)

∣∣∣∣∣ 1h
{

φ(ζ)

ζ − z − h
− φ(ζ)

ζ − z

}
− φ(ζ)

(ζ − z)2

∣∣∣∣∣ ≤ |h|Mδ3
.

This means ∣∣∣∣∣
∫

Γ

[
1

h

{
φ(ζ)

ζ − z − h
− φ(ζ)

ζ − z

}
− φ(ζ)

(ζ − z)2

]
dζ

∣∣∣∣∣ ≤ |h|Mδ3
`(Γ).

Unravelling the above inequality, we get, for h such that] |h| < r, the following
inequality. ∣∣∣∣∣F0(z + h)− F0(z)

h
− F1(z)

∣∣∣∣∣ ≤ |h|Mδ3
`(Γ).

Letting h→ 0, we see that F ′0 exists on Cr Γ, and on this set, F ′0(z) = F1(z).

Figure 1. Γ need not be a loop. The point z is the centre of
the circle Cr of radius r, and h is chosen so that |h| < r so that
z+h lies inside the circle, i.e. in the disc B. The shortest distance
between Γ and Cr is δ.

The same technique works for n > 1 too. The details are left to you. For
example, one can show that

(‡) 1

h

{
1

(ζ − z − h)2
− 1

(ζ − z)2

}
− 2

(ζ − z)3
=

3(ζ − z)h− 2h2

(ζ − z − h)2(ζ − z)3

By the triangle inequality, one gets∣∣∣∣∣ 3(ζ − z)h− 2h2

(ζ − z − h)2(ζ − z)3

∣∣∣∣∣ ≤ (3∆ + 2|h|)|h|
δ5

.
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From here one sees (by multiplying the expressions on both sides of (‡) by φ(ζ) and
then intgrating over Γ) that∣∣∣∣∣F1(z + h)− F1(z)

h
− 2F2(z)

∣∣∣∣∣ ≤ (3∆ + 2|h|)|h|
δ5

M`(Γ)

from which it is easy to see (by letting h → 0) that F ′1 exists and equals 2F2 on
Cr Γ. The general case is similar.

For a very elegant proof without messy computations (but requiring some math-
ematical maturity to read) see [A, p.121, Lemma 3] �

From Theorem 1.1.2 we deduce the following result.

Theorem 1.1.3. Let Γ be. simple loop and f a function which is analytic in the
interior of Γ and on all point of Γ. Then f is infinitely differentiable in the interior
of Γ and

f (n)(z) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ,

for all z in the interior of Γ.

Proof. In the statement of Theorem 1.1.2, take φ to be the function 1/(2πi)f ,
restricted to Γ. By Cauchy’s integral formula F0 = f in the interior Γ. The rest
follows from Theorem 1.1.2 �

Theorem 1.1.4. Let f be analytic on a domain D. Then f is infinitely differen-
tiable on D.

Proof. Let z be a point in D. Pick a circular neighbourhood B of z such that B
and the bounding circle C of B lie in D. Then in B, from Theorem 1.1.3, f is
infinitely differentiable. Since the property of being infinitely differentiable is local,
f is infinitely differentiable. �

The following corollary is immediate.

Corollary 1.1.5. Let D be a domain, f a function on D which has an antideriv-
ative. Then f is analytic on D.

Proof. Let F be an antiderivative of f on D. Then F is infinitely differentiable
according to Theorem 1.1.4. In particular F ′ is analytic on D. Since f = F ′ we
are done. �

Corollary 1.1.5 gives us a well known theorem known as Morera’s Theorem.

Theorem 1.1.6. (Morera’s Theorem)Let f be a continuous function on a domain
D such that

∫
Γ
f(z)dz = 0 for every loop Γ in D. Then f is analytic.

Proof. The condition on f is equivalent to saying f has an antiderivative in D (see
Theorem 2.1.2 in Lecture 13). By Corollary 1.1.5, f is analytic on D. �

2. Liouville’s Theorem and the Fundamental Theorem of Algebra

2.1. The Cauchy estimates. Let z ∈ C and let BR = BR(z) be the circular
neighbourhood BR = {w ∈ C | |w − z| < R}, and CR = {ζ ∈ C | |ζ − z| = R} the
bounding circle of BR. Suppose f is analytic on BR and also at each point of CR.
From Theorem 1.1.3, we get

f (n)(z) =
n!

2πi

∮
CR

f(ζ)

(ζ − z)n+1
dζ.
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LetM be the maximum of |f(ζ)| as ζ varies over CR. Then, for ζ ∈ CR, |f(ζ)/(ζ − z)n+1| =
|f(ζ)/Rn+1| ≤M/Rn+1. It follows that

|f (n)(z)| ≤ n!

2π

M

Rn+1
`(CR) =

n!

2π

M

Rn+1
2πR =

n!M

Rn
.

The inequalities (one for each n ≥ 0)

(2.1.1) |f (n)(z)| ≤ n!M

Rn

are called the Cauchy estimates.

2.2. Liouville’s Theorem. The Cauchy estimates are very useful. They give us
Lousiville’s Theorem which says that a non constant entire function cannot be
bounded. Recall that a function f is said to be bounded in its domain D if there
exists a number M such that |f(z)| ≤ M for all z ∈ D. We state Lousville’s
Theorem in the following form:

Theorem 2.2.1. (Louisville’s Theorem) Suppose f is an entire bounded function.
Then f is a constant.

Proof. For z ∈ C, let CR be the circle of radius R centred at z, oriented in the
positive direction. Since f is bounded, there exists a number M such that |f(z)| ≤
M for z ∈ C. Therefore by the Cauchy estimates

|f ′(z)| ≤ M

R
.

Let R → ∞. We see that |f ′(z)| = 0, i.e. f ′(z) = 0. Since z ∈ C was chosen
arbitrarily, f ′ vanishes at every point of C. Thus f is a constant. �

2.3. The Fundamental Theorem of Algebra. Let

(2.3.1) p(z) = a0 + a1z + · · ·+ anz
n

be a polynomial of degree n. This means an 6= 0. Suppose further that p is not a
constant polynomial, i.e. suppose n ≥ 1. Then a famous theorem of Gauss says that
the equaltion p(z) = 0 has at least one solution. This is the so called Fundamental
Theorem of Algebra.

Theorem 2.3.2. (The Fundamental Theorem of Algebra) Let p be a polynomial
with complex coefficients with degree of p at least 1. Then there exists a complex
number w such that p(w) = 0, i.e. the equation p(z) = 0 has at least one solution.

Proof. Write p as in (2.3.1). We know that an 6= 0. Now, on Cr {0},

p(z) = zn

(
a0

zn
+

a1

zn−1
+ · · ·+ an

)
.

As z → ∞, the expression in parentheses approaches an 6= 0. Since zn → ∞ as
z → ∞, the limit of p(z) as z approaches ∞ is of the form ∞ · an, in other words
limz→∞ p(z) = ∞. This means, there exists R > 0 such that |p(z)| ≥ 1 for all z
such that |z| > R.

Suppose there are no solutions to the equation p(z) = 0. Then

f(z) :=
1

p(z)
4



is entire. It follows that it is bounded on the closed and bounded set of point in the
closed ball B of radius R centred at z = 0. In other words, there exists M0 such that
|f(z)| ≤ M0 for all z such that |z| ≤ R. On the other hand, since |p(z)| ≥ 1 when
|z| > R, we have |f(z)| ≤ 1 for z such that |z| > R. If we set M = max{M0, 1},
then we get

|f(z)| ≤M, z ∈ C.
Thus f is bounded. By Louisville’s theorem, f is a constant. This means p is a
constant. However, the degree of p is n which is greater than 1, and so p(n)(z) =
an 6= 0, which means p is not a constant. This is a contradiction. Hence there
exists a solution to the equation p(z) = 0.

Figure 2. Outside the disc, |p(z)| ≥ 1, and inside the disc,
|f(z)| ≤M0.

�
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