LECTURE 16

Date of Lecture: March 15, 2022

1. Infinite differentiability of analytic functions

1.1. A general formula for derivatives. Here is a more general setting than what we had in the last lecture. Let Γ be a contour (not necessarily closed) and

$$
\phi: \Gamma \longrightarrow \mathbb{C}
$$

a continuous function on Γ. On $D=\mathbb{C} \backslash \Gamma$ define the functions F_{n}, one for each non-negative integer n, as follows

$$
\begin{equation*}
F_{n}(z):=\int_{\Gamma} \frac{\phi(\zeta)}{(\zeta-z)^{n+1}} d \zeta, \quad z \notin \Gamma \tag{1.1.1}
\end{equation*}
$$

Theorem 1.1.2. F_{n} is analytic on $\mathbb{C} \backslash \Gamma$ for every $n \geq 0$, and for such n, the following formula holds

$$
F_{n}^{\prime}(z)=(n+1) F_{n+1}(z) \quad z \in \mathbb{C} \backslash \Gamma
$$

In particular F_{0} is infinitely differentiable on $\mathbb{C} \backslash \Gamma$ and for $n \geq 0$

$$
F_{0}^{(n)}(z)=n!F_{n}(z) \quad z \in \mathbb{C} \backslash \Gamma
$$

Proof. The second formula follows from the first in an obvious. We will now prove the first formula (at least for $n=0$).

Pick $z \in \mathbb{C} \backslash \Gamma$. There exists a circular neighbourhood z,

$$
B=\{w \in \mathbb{C}| | w-z \mid<r\}
$$

such that B lies in $\mathbb{C} \backslash \Gamma$, and further the circle $C_{r}=\{w| | w-z \mid=r\}$ also lies in $\mathbb{C} \backslash \Gamma$. Since Γ is closed and bounded and the closed disc $\bar{B}=B \cup C_{r}$ is also closed and bounded, we have positive real numbers δ and Δ defined by $\delta=\min \{|\zeta-w| \mid \zeta \in \Gamma, w \in \bar{B}\}$ and $\Delta=\max \{|\zeta-w| \mid \zeta \in \Gamma, w \in \bar{B}\}$. Then $0<\delta<\Delta<\infty$. Let

$$
\begin{equation*}
M=\max _{\zeta \in \Gamma} \mid \phi(\zeta \mid \tag{*}
\end{equation*}
$$

We will show that F_{0} is differentialble in $\mathbb{C} \backslash \Gamma$ and that $F_{0}^{\prime}=F_{1}$ on this set. To that end, here are some computations.

$$
\begin{aligned}
\frac{1}{h}\left\{\frac{1}{\zeta-z-h}-\frac{1}{\zeta-z}\right\}-\frac{1}{(\zeta-z)^{2}} & =\frac{1}{h} \frac{(\zeta-z)-(\zeta-z-h)}{(\zeta-z)(\zeta-z-h)}-\frac{1}{(\zeta-z)^{2}} \\
& =\frac{1}{(\zeta-z)(\zeta-z-h)}-\frac{1}{(\zeta-z)^{2}} \\
& =\frac{(\zeta-z)-(\zeta-z-h)}{(\zeta-z)^{2}(\zeta-z-h)} \\
& =\frac{h}{(\zeta-z)^{2}(\zeta-z-h)} \\
& 1
\end{aligned}
$$

Pick h so that $|h|<r$. This means $z+h$ lies in B. For such h, by definition of $\delta,|\zeta-z-h|>\delta$. We also have, since $z \in B,|\zeta-z|>\delta$. This means that $\mid(\zeta-z)^{2}\left(\zeta-z-h \mid>\delta^{3}\right.$ and hence

$$
\begin{equation*}
\left|\frac{1}{h}\left\{\frac{1}{\zeta-z-h}-\frac{1}{\zeta-z}\right\}-\frac{1}{(\zeta-z)^{2}}\right| \leq \frac{|h|}{\delta^{3}} \tag{**}
\end{equation*}
$$

Using $(*)$ and $(* *)$ we get

$$
\left|\frac{1}{h}\left\{\frac{\phi(\zeta)}{\zeta-z-h}-\frac{\phi(\zeta)}{\zeta-z}\right\}-\frac{\phi(\zeta)}{(\zeta-z)^{2}}\right| \leq \frac{|h| M}{\delta^{3}}
$$

This means

$$
\left|\int_{\Gamma}\left[\frac{1}{h}\left\{\frac{\phi(\zeta)}{\zeta-z-h}-\frac{\phi(\zeta)}{\zeta-z}\right\}-\frac{\phi(\zeta)}{(\zeta-z)^{2}}\right] d \zeta\right| \leq \frac{|h| M}{\delta^{3}} \ell(\Gamma)
$$

Unravelling the above inequality, we get, for h such that] $|h|<r$, the following inequality.

$$
\left|\frac{F_{0}(z+h)-F_{0}(z)}{h}-F_{1}(z)\right| \leq \frac{|h| M}{\delta^{3}} \ell(\Gamma)
$$

Letting $h \rightarrow 0$, we see that F_{0}^{\prime} exists on $\mathbb{C} \backslash \Gamma$, and on this set, $F_{0}^{\prime}(z)=F_{1}(z)$.

Figure 1. Γ need not be a loop. The point z is the centre of the circle C_{r} of radius r, and h is chosen so that $|h|<r$ so that $z+h$ lies inside the circle, i.e. in the disc B. The shortest distance between Γ and C_{r} is δ.

The same technique works for $n>1$ too. The details are left to you. For example, one can show that

$$
\frac{1}{h}\left\{\frac{1}{(\zeta-z-h)^{2}}-\frac{1}{(\zeta-z)^{2}}\right\}-\frac{2}{(\zeta-z)^{3}}=\frac{3(\zeta-z) h-2 h^{2}}{(\zeta-z-h)^{2}(\zeta-z)^{3}}
$$

By the triangle inequality, one gets

$$
\left|\frac{3(\zeta-z) h-2 h^{2}}{(\zeta-z-h)^{2}(\zeta-z)^{3}}\right| \leq \frac{(3 \Delta+2|h|)|h|}{\delta^{5}}
$$

From here one sees (by multiplying the expressions on both sides of (\ddagger) by $\phi(\zeta)$ and then intgrating over Γ) that

$$
\left|\frac{F_{1}(z+h)-F_{1}(z)}{h}-2 F_{2}(z)\right| \leq \frac{(3 \Delta+2|h|)|h|}{\delta^{5}} M \ell(\Gamma)
$$

from which it is easy to see (by letting $h \rightarrow 0$) that F_{1}^{\prime} exists and equals $2 F_{2}$ on $\mathbb{C} \backslash \Gamma$. The general case is similar.

For a very elegant proof without messy computations (but requiring some mathematical maturity to read) see [A, p.121, Lemma 3]

From Theorem 1.1.2 we deduce the following result.
Theorem 1.1.3. Let Γ be. simple loop and f a function which is analytic in the interior of Γ and on all point of Γ. Then f is infinitely differentiable in the interior of Γ and

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

for all z in the interior of Γ.
Proof. In the statement of Theorem 1.1.2, take ϕ to be the function $1 /(2 \pi i) f$, restricted to Γ. By Cauchy's integral formula $F_{0}=f$ in the interior Γ. The rest follows from Theorem 1.1.2

Theorem 1.1.4. Let f be analytic on a domain D. Then f is infinitely differentiable on D.

Proof. Let z be a point in D. Pick a circular neighbourhood B of z such that B and the bounding circle C of B lie in D. Then in B, from Theorem 1.1.3, f is infinitely differentiable. Since the property of being infinitely differentiable is local, f is infinitely differentiable.

The following corollary is immediate.
Corollary 1.1.5. Let D be a domain, f a function on D which has an antiderivative. Then f is analytic on D.

Proof. Let F be an antiderivative of f on D. Then F is infinitely differentiable according to Theorem 1.1.4. In particular F^{\prime} is analytic on D. Since $f=F^{\prime}$ we are done.

Corollary 1.1.5 gives us a well known theorem known as Morera's Theorem.
Theorem 1.1.6. (Morera's Theorem)Let f be a continuous function on a domain D such that $\int_{\Gamma} f(z) d z=0$ for every loop Γ in D. Then f is analytic.
Proof. The condition on f is equivalent to saying f has an antiderivative in D (see Theorem 2.1.2 in Lecture 13). By Corollary 1.1.5, f is analytic on D.

2. Liouville's Theorem and the Fundamental Theorem of Algebra

2.1. The Cauchy estimates. Let $z \in \mathbb{C}$ and let $B_{R}=B_{R}(z)$ be the circular neighbourhood $B_{R}=\{w \in \mathbb{C}| | w-z \mid<R\}$, and $C_{R}=\{\zeta \in \mathbb{C}| | \zeta-z \mid=R\}$ the bounding circle of B_{R}. Suppose f is analytic on B_{R} and also at each point of C_{R}. From Theorem 1.1.3, we get

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \oint_{C_{R}} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

Let M be the maximum of $|f(\zeta)|$ as ζ varies over C_{R}. Then, for $\zeta \in C_{R},\left|f(\zeta) /(\zeta-z)^{n+1}\right|=$ $\left|f(\zeta) / R^{n+1}\right| \leq M / R^{n+1}$. It follows that

$$
\left|f^{(n)}(z)\right| \leq \frac{n!}{2 \pi} \frac{M}{R^{n+1}} \ell\left(C_{R}\right)=\frac{n!}{2 \pi} \frac{M}{R^{n+1}} 2 \pi R=\frac{n!M}{R^{n}}
$$

The inequalities (one for each $n \geq 0$)

$$
\begin{equation*}
\left|f^{(n)}(z)\right| \leq \frac{n!M}{R^{n}} \tag{2.1.1}
\end{equation*}
$$

are called the Cauchy estimates.
2.2. Liouville's Theorem. The Cauchy estimates are very useful. They give us Lousiville's Theorem which says that a non constant entire function cannot be bounded. Recall that a function f is said to be bounded in its domain D if there exists a number M such that $|f(z)| \leq M$ for all $z \in D$. We state Lousville's Theorem in the following form:

Theorem 2.2.1. (Louisville's Theorem) Suppose f is an entire bounded function. Then f is a constant.

Proof. For $z \in \mathbb{C}$, let C_{R} be the circle of radius R centred at z, oriented in the positive direction. Since f is bounded, there exists a number M such that $|f(z)| \leq$ M for $z \in \mathbb{C}$. Therefore by the Cauchy estimates

$$
\left|f^{\prime}(z)\right| \leq \frac{M}{R}
$$

Let $R \rightarrow \infty$. We see that $\left|f^{\prime}(z)\right|=0$, i.e. $f^{\prime}(z)=0$. Since $z \in \mathbb{C}$ was chosen arbitrarily, f^{\prime} vanishes at every point of \mathbb{C}. Thus f is a constant.

2.3. The Fundamental Theorem of Algebra. Let

$$
\begin{equation*}
p(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \tag{2.3.1}
\end{equation*}
$$

be a polynomial of degree n. This means $a_{n} \neq 0$. Suppose further that p is not a constant polynomial, i.e. suppose $n \geq 1$. Then a famous theorem of Gauss says that the equaltion $p(z)=0$ has at least one solution. This is the so called Fundamental Theorem of Algebra.

Theorem 2.3.2. (The Fundamental Theorem of Algebra) Let p be a polynomial with complex coefficients with degree of p at least 1. Then there exists a complex number w such that $p(w)=0$, i.e. the equation $p(z)=0$ has at least one solution.

Proof. Write p as in (2.3.1). We know that $a_{n} \neq 0$. Now, on $\mathbb{C} \backslash\{0\}$,

$$
p(z)=z^{n}\left(\frac{a_{0}}{z^{n}}+\frac{a_{1}}{z^{n-1}}+\cdots+a_{n}\right)
$$

As $z \rightarrow \infty$, the expression in parentheses approaches $a_{n} \neq 0$. Since $z^{n} \rightarrow \infty$ as $z \rightarrow \infty$, the limit of $p(z)$ as z approaches ∞ is of the form $\infty \cdot a_{n}$, in other words $\lim _{z \rightarrow \infty} p(z)=\infty$. This means, there exists $R>0$ such that $|p(z)| \geq 1$ for all z such that $|z|>R$.

Suppose there are no solutions to the equation $p(z)=0$. Then

$$
f(z):=\frac{1}{p(z)}
$$

is entire. It follows that it is bounded on the closed and bounded set of point in the closed ball \bar{B} of radius R centred at $z=0$. In other words, there exists M_{0} such that $|f(z)| \leq M_{0}$ for all z such that $|z| \leq R$. On the other hand, since $|p(z)| \geq 1$ when $|z|>R$, we have $|f(z)| \leq 1$ for z such that $|z|>R$. If we set $M=\max \left\{M_{0}, 1\right\}$, then we get

$$
|f(z)| \leq M, \quad z \in \mathbb{C}
$$

Thus f is bounded. By Louisville's theorem, f is a constant. This means p is a constant. However, the degree of p is n which is greater than 1 , and so $p^{(n)}(z)=$ $a_{n} \neq 0$, which means p is not a constant. This is a contradiction. Hence there exists a solution to the equation $p(z)=0$.

Figure 2. Outside the disc, $|p(z)| \geq 1$, and inside the disc, $|f(z)| \leq M_{0}$.

References

[A] Lars V. Ahlfors, Complex Analysis, Third Edition, McGraw Hill, New York, 1979.

