LECTURE 15

Date of Lecture: March 10, 2022

1. Using Cauchy's Integral Theorem and Integral Formula

1.1. Recap of last lecture. Here are the things we proved last time, which we will use.
I. (Cauchy's Integral Theorem) Let D be a simply connected region, Γ a loop in D, and f an analytic function on D. Then

$$
\int_{\Gamma} f(z) d z=0
$$

II. Let D be a simply connected domain. Every analytic function on D has an antiderivative.
III. Let Γ be a simple loop and f a function which is analytic on in the interior of Γ and at each point of Γ (i.e. analytic in a neighbourhood of each point of Γ), then

$$
\int_{\Gamma} f(z) d z=0
$$

This was the comment in 1.3.3 of Lecture 14. The point is that under the hypotheses, there is a simply connected domain D on which f us defined which contains Γ as well as its interior.
IV. Let Γ be a contour and f a continuous complex-valued function on Γ. Suppose M is a real number such that $|f(z)| \leq M$ for all $z \in \Gamma$. Then

$$
\left|\int_{\Gamma} f(z) d z\right| \leq M \ell(\Gamma)
$$

V. (Cauchy's Integral Formula) Let D be a simply connected domain, Γ a simple loop in D oriented in the positive direction and f an analytic function on D. Let Ω be the interior of Γ. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad \text { for } z \in \Omega
$$

There is a minor variant of V , based on III above, namely:
VI. Let Γ be a simple loop oriented in the positive sense, Ω the interior of Γ, and f a function which is analytic in the interior Γ and in a neighbourhood of every point of Γ. Then

$$
f(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta, \quad \text { for } z \in \Omega
$$

1.2. Examples.

1. Let Γ be simple loop, positively oriented, Ω the interior of Γ, and a a point in Ω. Then

$$
\int_{\Gamma} \frac{1}{z-a} d z=2 \pi i
$$

This follows from Cauchy's Integral Formula, i.e. V above, by taking $f(z)=1$.
2. Let us evaluate

$$
\int_{\Gamma} \frac{1}{z^{2}-16} d z
$$

where Γ is the circle $|z|=2$ oriented positively.

If $f(z)=\frac{1}{z^{2}-16}$, then f is analytic on $\mathbb{C} \backslash\{-4,4\}$. In particular it is analytic in the interior of Γ as well as on every point of Γ. It follows that

$$
\int_{\Gamma} \frac{1}{z^{2}-16} d z=0
$$

3. Let us now integrate the integrand in the above example over a $|z|=5$, i.e. let us evaluate

$$
\int_{\Gamma} \frac{1}{z^{2}-16} d z
$$

where now Γ is the circle $|z|=5$ oriented positively.

This time the function f is no longer analytic in the interior of Γ since ± 4 lie inside Γ.

There are two ways of evaluating our integral. The first is to use the partial fraction decomposition

$$
\frac{1}{z^{2}-16}=\frac{1}{8}\left(\frac{1}{z-4}-\frac{1}{z+4}\right)
$$

Using the result in Example 1, we see that

$$
\int_{\Gamma} \frac{1}{z^{2}-16} d z=\frac{1}{8} \int_{\Gamma} d z \frac{1}{z-4} d z-\int_{\Gamma} \frac{1}{z+4} d z=\frac{1}{8}(2 \pi i)-\frac{1}{8}(2 \pi i)=0
$$

The second is to consider the two loops Γ_{L} and Γ_{R}. Γ_{L} (the "left loop") is the loop which is the left half of the given circle (traversed counterclockwise) plus the vertical line segment from $-5 i$ to $5 i . \Gamma_{R}$ (the "right loop") is the loop which is the downward line segment from $5 i$ to $-5 i$, followed by the right half of the given circle oriented in the counter clockwise direction. It is clear that

$$
\begin{aligned}
\int_{\Gamma} \frac{1}{z^{2}-16} d z & =\int_{\Gamma_{L}} \frac{1}{z^{2}-16} d z+\int_{\Gamma_{R}} \frac{1}{z^{2}-16} d z \\
& =\int_{\Gamma_{L}} \frac{1 /(z-4)}{z+4} d z+\int_{\Gamma_{R}} \frac{1 /(z+4)}{z-4} d z
\end{aligned}
$$

Now $f_{L}(z)=1 /(z-4)$ is analytic in the interior of Γ_{L} and on every point of Γ_{L} and hence (by the Cauchy Integral Formula) $\int_{\Gamma_{L}} f_{L}(z) /(z+4) d z=2 \pi i f_{L}(-4)=$ $(2 \pi i)(1 /(-8))=-(\pi i) / 4$. Similarly, settling $f_{R}=1 /(z+4)$, one sees that $\int_{\Gamma_{R}} f_{R}(z) /(z-4) d z=2 \pi i f_{R}(4)=(2 \pi i)(1 / 8)=(\pi i) / 4$. Thus

$$
\int_{\Gamma} \frac{1}{z^{2}-16} d z=\int_{\Gamma_{L}} \frac{f_{L}(z)}{z+4}+\int_{\Gamma_{R}} \frac{f_{R}(z)}{z-4} d z=-(\pi i) / 4+(\pi i) / 4=0
$$

4. If Γ is the ellipse $x^{2}+4 y^{2}=1$ traversed once in the positive sense, then clearly, by Example 1,

5. Let us evaluate

$$
\int_{\Gamma} \frac{3 z-2}{z^{2}-z} d z
$$

where Γ is the curve in the picture below.

The trick is to use the partial fraction decomposition

$$
\frac{3 z-2}{z^{2}-z}=\frac{2}{z}+\frac{1}{z-1}
$$

Since $z=0$ and $z=1$ lie in the interior of Γ the formula in Example 1 gives

$$
\int_{\Gamma} \frac{3 z-2}{z^{2}-z} d z=\int_{\Gamma} \frac{2}{z} d z+\int_{\Gamma} \frac{1}{z-1} d z=2(2 \pi i)+2 \pi i=6 \pi i
$$

6. Let Γ be the simple loop in the picture.

Let us evaluate

$$
\int_{\Gamma} \frac{1}{z^{2}-1} d z
$$

Once again there are two ways.
Method I: Let $f(z)=1 /(z-1)$. Then the required integral is $\int_{\Gamma} f(z) /(z+1) d z$. Now $f(z)$ is analytic in the interior of Γ and on Γ. So by the Cauchy Integral formula, we get

$$
\int_{\Gamma} \frac{1}{z^{2}-1} d z=\int_{\Gamma} \frac{f(z)}{z+1}=2 \pi i f(-1)=2 \pi i\left(-\frac{1}{2}\right)=-\pi i
$$

Method II: Use the partial fraction decomposition,

$$
\frac{1}{z^{2}-1}=\frac{1 / 2}{z-1}-\frac{1 / 2}{z+1}
$$

The integral of the first term in the partial fraction decomposition is zero by the Cauchy Integral Theorem since $1 /(z-1)$ is analytic inside Γ and on Γ. The integral of the second term is $-(1 / 2)(2 \pi i)=-\pi i$.
7. Now let us evaluate

$$
\int_{|z-2|=3} \frac{e^{z}+\sin z}{z} d z
$$

where the circle $|z-2|=3$ is oriented in the counter-clockwise direction. It is clear that $z=0$ lies in the interior of the circle. If $f(z)=e^{z}+\sin z$ then, by the Cauchy Integral Formula,

$$
\int_{|z-2|=3} \frac{e^{z}+\sin z}{z} d z=2 \pi i f(0)=2 \pi i\left(e^{0}+\sin (0)=2 \pi i .\right.
$$

8. Let Γ be as in the picture.

Let us evaluate

$$
\int_{\Gamma} \frac{\cos z}{z^{2}-4} d z
$$

Let $f(z)=\cos z /(z+2)$. Note that f is analytic inside Γ and also at every point in Γ. The given integral can be re-written as $\mathrm{i} \int_{\Gamma} f(z) /(z-2) d z$. Thus

$$
\int_{\Gamma} \frac{\cos z}{z^{2}-4} d z=\int_{\Gamma} \frac{f(z)}{z-2} d z=2 \pi i f(2)=\frac{\pi i \cos (2)}{2}
$$

2. Infinite differentiability of analytic functions

2.1. A real variable example. Let $f \in \mathbb{R} \rightarrow \mathbb{R}$ be the function given by the rule:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ -x^{2} & \text { if } x<0\end{cases}
$$

One checks easily that f is differentiable for its right derivative at $x=0$ and its left derivative at $x=0$ are the same, and the two derivatives are zero at $x=0$. The picture above shows that the graph has a tangent at $x=0$. In fact

$$
f^{\prime}(x)=2|x|, \quad x \in \mathbb{R}
$$

Unfortunately, the first derivative f^{\prime} is not differentiable at $x=0$ in this case. In other words $f^{\prime \prime}(0)$ does not exist.

This state of affairs is very different from what happens in complex analysis. An analytic function is in fact infinitely differentiable.
2.2. Infinite differentiablility. Let f be analytic on a domain D. If Γ is a simple loop in D whose interior Ω is in D, then the following formula holds.

$$
\begin{equation*}
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{2}} d z, \quad z \in \Omega \tag{2.2.1}
\end{equation*}
$$

In fact much more can be said. Namely that the $n^{\text {th }}$ derivative $f^{(n)}$ of f exists on D, and within Ω (the interior of Γ) this $n^{\text {th }}$ derivative is given by the formula

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d z, \quad z \in \Omega \tag{2.2.2}
\end{equation*}
$$

We gave a proof of (2.2.1) in class, but we will prove something more general in the next class, and so I will not give the proof here.

