
LECTURE 14

Date of Lecture: March 8, 2022

1. Integrals and simply connected regions

1.1. The main theorem in this section is the following:

Theorem 1.1.1. (Cauchy’s Integral Theorem) Let D be a simply connected region,
Γ a loop in D, and f an analytic function on D. Then∫

Γ

f(z)dz = 0.

Proof. Since D is simply connected, the loop Γ can be deformed to a point, and
the integral over a point is zero. �

1.2. The Green’s Theorem approach. In this subsection we will give a different
proof of Theorem 1.1.1 than the one we above. This alternative proof uses Green’s
Theorem from vector calculus. Before we start on that we wish to state a purely
topological fact.

Proposition 1.2.1. A domain D is simply connected if for every simple loop Γ in
D, the interior of Γ lies in D.

We omit the proof of this topological fact. It is intuitively obvious. �

Proof of Theorem 1.1.1 using Green’s Theorem. Suppose

F(x, y) = V (x, y)i +W (x, y)j

is a vector field on D, with V and W having continuous first partial derivatives on
D, and Γ is a simple loop in D oriented in the positive direction. Let R be the
interior of Γ. Since D is simply connected, R lies inside D. Green’s Theorem is the
statement that the following equality holds

(1.2.2)

∫
Γ

(V dx+Wdy) =

∫∫
R

(
∂W

∂x
− ∂V

∂y

)
dA

The left side is the line integral
∫

Γ
F · ds.

Coming to Theorem 1.1.1, suppose we write our analytic function f on D as
f = u + iv where u and v are the real and imaginary parts of f . We will assume
that u and v have continuous first partial derivatives. (We assumed this in the
earlier proof of the invariance of integrals too.) Let Γ be a simple loop and suppose
it is oriented positively, and let R be its interior. By the definition given on page 4
of Lecture 12, we know

∫
Γ
f(z)dz is equal to

∫
Γ
(udx− vdy) + i

∫
Γ
(vdx+udy). This
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gives: ∫
Γ

f(z)dz =

∫
Γ

(udx− vdy) + i

∫
Γ

(vdx+ udy)

=

∫∫
R

(
−∂v
∂x
− ∂u

∂y

)
dA+ i

∫∫
R

(
∂u

∂x
− ∂v

∂y

)
dA

= 0.

The second equality is via (1.2.2) and the third via the Cauchy-Riemann equations.
If Γ is negatively oriented then −Γ is positively oriented and since

∫
Γ

= −
∫
−Γ

we

see that in this case too
∫

Γ
f(z)dz = 0. Next if Γ is not a simple loop, it can be

broken up into a finite number of simple loops in D and so once again, we see that∫
Γ
f(z)dz = 0.
This completes the alternative proof of Theorem 1.1.1 via Green’s Theorem. �

1.3. Antiderivatives and simply connected regions. Recall that we proved
that a continuous complex valued function f on a domain D has an antiderivative
on D if and only if

∫
Γ
f(z)dz = 0 for all loops in D. An immediate corollary of this

and the Cauchy Integral Theorem (i.e. Theorem 1.1.1) is

Theorem 1.3.1. Let D be a simply connected domain. Every analytic function on
D has an antiderivative.

Examples 1.3.2. Here are some examples illustrating some of the results discussed
above.

1. We know that
∫
C
z−1dz = 2πi 6= 0, where C is the unit circle |z| = 1 oriented

in the positive direction. This proves, by Theorem 1.1.1, that C r {0} is not
simply connected, for z−1 is an analytic function on Cr {0}. It also shows that
1/z has no antiderivative on C r {0}. Figure 1 may provide a more intuitive
explanation of reason the punctured plane Cr {0} is not simply connected.

Figure 1. The curve shown cannot be shrunk to a point in the
punctured plane Cr {0}.
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2. The set D = C r (−∞, 0] is simply connected. Indeed, let Γ be a loop in
D, say with parameterization ζ(t), t ∈ [0, 1]. Set z(s, t) = s + (1 − s)ζ(t)
for (s, t) ∈ [0, 1] × [0, 1]. It is easy to check that z(s, t) lies in D for every
(s, t) ∈ [0, 1]× [0, 1]. In fact z(s, t) lies in the line segment joining ζ(t) to z = 1
(see Figure 2). Moreover, it gives a deformation of Γ to the point 1.

Figure 2. For s ∈ [0, 1], z(s, t) = s + (1 − s)ζ(t) lies in the line
segment joining ζ(t) to 1, and so lies in Cr (−∞, 0].

By Theorem 1.3.1 1/z must have an antiderivative on D. Two antiderivatives
of 1/z differ by a constant, and if we know the value of the antiderivative at
any one point in D, we know it everywhere. The antiderivative which is zero at
z = 1 is the principal logarithm Log.

1.3.3. Suppose Γ is a simple loop, Ω its interior, and f a function which is analytic
in an open set U which contains Ω ∪ Γ. Then there is simply connected domain
D which is sandwiched between Ω ∪ Γ and U : Ω ∪ Γ ⊂ D ⊂ U . An immediate
consequence is this: If one has a function f which is analytic on Ω and at each
point of Γ (i.e. analytic in a neighbourhood od each point of Γ), then∫

Γ

f(z)dz = 0.

The proof is that, we can find a simply connected domain D containing Γ, and
Cauchy’s Integral formula applies to all loops in D.

2. A fundamental inequality

2.1. The absolute value of an integral. Let g : [a, b] → C be a continuous

function. We know that
∫ b
a
g(t)dt is the limit of sums of the form

∑
i g(t∗i )(ti−ti−1)
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where

℘ : a = t0 < t1 < · · · < tn = b

is a partition of the interval [a, b] into subintervals, and t∗i is any point in [ti−1, ti].
More precisely, if µ(℘) is the maximum length of the subintervals in ℘, then∫ b

a

g(t)dt = lim
µ(℘)→0

n∑
i=1

g(t∗i )(ti − ti−1).

Now |
∑n
i=1 g(t∗i )(ti − ti−1)| ≤

∑n
i=1|g(t∗i )(ti − ti−1)| by the triangle inequality.

Taking limits as µ(℘)→ 0, we get

(2.1.1)

∣∣∣∣∣
∫ b

a

g(t)dt

∣∣∣∣∣ ≤
∫ b

a

|g(t)|dt.

2.2. The length of a contour. Let z(t), t ∈ [a, b] be a parameterization of a
contour Γ. Suppose we write z(t) = x(t) + iy(t). From vector calculus we know
that the length `(Γ) of Γ is given by the formula

`(Γ) =

∫ b

a

{
dx(t)

dt

2

+
dy(t)

dt

2
}1/2

dt.

Since |z′(t)| =
√

dx(t)
dt

2
+ dy(t)

dt

2
, we get

(2.2.1) `(Γ) =

∫ b

a

|z′(t)|dt.

The following is a crucial result

Theorem 2.2.2. Let Γ be a contour and f a continuous complex-valued function
on Γ. Suppose M is a real number such that |f(z)| ≤M for all z ∈ Γ. Then∣∣∣∫

Γ

f(z)dz
∣∣∣ ≤M`(Γ).

Proof. Let z(t), t ∈ [a, b] be a parameterization of Γ. Then∣∣∣∫
Γ

f(z)dz
∣∣∣ =

∣∣∣∣∣
∫ b

a

f(z(t))z′(t)dt

∣∣∣∣∣
≤
∫ b

a

|f(z(t))||z′(t)|dt (by (2.1.1))

≤M
∫ b

a

|z′(t)|dt

= M`(Γ) (by (2.2.1))

This is the inequality we had to establish. �

3. The Cauchy Integral Formula

3.1. Let D be a simply connected domain, Γ a simple loop in D oriented in the
positive direction, Ω the interior of Γ. Since D is simply connected, Ω is a subset
of D. Next let z0 be a point in Ω. We can find a positive number r small enough
that the closed disc {z | |z − z0| ≤ r} of radius r centred at z0 lies entirely in Ω.
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Let Cr be circle |z − z0| = r oriented positively. It is not hard to see that if h is an
analytic function on D r {z0} then

(3.1.1)

∫
Γ

h(z)dz =

∫
Cr

h(z)dz

This can be seen in two ways. Either note that Γ can be deformed to Cr in Dr{z0}.
This is a topological fact which is intuitively clear. See, for example, Figure 3.

Figure 3. Γ and Cr are deformable to each other in D r {z0}.

Another way is to break up the area between the two curves into two simply
connected regions.

Figure 4. Breaking up the region between Γ and Cr into two pieces.

Now let ΓL be the left loop determined by the “left sides” of Γ and Cr and the
two green curves above.

Similarly one has the right loop ΓR.
Since ΓL and ΓR are simple loops and h is analytic in their interiors and on

them,
∫

ΓL
h(z)dz =

∫
ΓR
h(z)dz = 0 (see 1.3.3). It is easy to see that we have the
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Figure 5. The contour ΓL.

Figure 6. The contour ΓR.

following relationship:
∫

ΓL
h(z)dz+

∫
ΓR
h(z)dz =

∫
Γ
h(z)dz−

∫
Cr
h(z)dz. From this

it follows that
∫

Γ
h(z)dz −

∫
Cr
h(z)dz = 0, proving (3.1.1)

Now suppose f is analytic on D. Define a new function g : Dr{z0} by the rule:

(3.1.2) g(z) =


f(z)− f(z0)

z − z0
when z ∈ D r {z0}

f ′(z0) when z = z0

It is clear that g is analytic on D r {z0}. Moreover,

lim
z→z0

g(z) = lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0) = g(z0).

Thus g is continuous at z0. Thus g is continuous on D, in particular on the set
Ω∪Γ. Now Ω∪Γ is a closed and bounded set, and so every continuous real function
on it is bounded, and hence |g| is bounded on Ω ∪ Γ. In other words we have a
positive number M such that

(3.1.3) |g(z)| ≤M, ∀z ∈ Ω ∪ Γ.

Since g is analytic on D r {z0}, by (3.1.1) we have
∫

Γ
g(z)dz =

∫
Cr
g(z)dz. It

follows that ∣∣∣∣∣
∫

Γ

g(z)dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
Cr

g(z)dz

∣∣∣∣∣ ≤M`(Cr) = M(2πr).

Letting r ↓ 0, we see that
∫

Γ
g(z)dz = 0. In other words, using the definition of g

in (3.1.2) we have ∫
Γ

f(z)− f(z0)

z − z0
dz = 0.
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This means ∫
Γ

f(z)

z − z0
dz =

∫
Γ

f(z0)

z − z0
dz = f(z0)

∫
Γ

1

z − z0
dz.

Once again using (3.1.1), with h(z) = 1/(z−z0), we get (using the parameterization
z(t) = z0 + reit, t ∈ [0, 2π] for Cr):∫

Γ

f(z)

z − z0
dz = f(z0)

∫
Γ

1

z − z0
dz = f(z0)

∫
Cr

1

z − z0
dz = (2πi)f(z0),

In other words

(3.1.4) f(z0) =
1

2πi

∫
Γ

f(z)

z − z0
dz.

We re-state the above in the following way

Theorem 3.1.5. (Cauchy Integral Formula) Let D be a simply connected domain,
Γ a simple loop in D oriented in the positive direction and f an analytic function
on D. Let Ω be the interior of Γ. Then

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ, for z ∈ Ω.

Proof. This is just a re-statement of (3.1.4). �
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