LECTURE 14

Date of Lecture: March 8, 2022

1. Integrals and simply connected regions

1.1.  The main theorem in this section is the following:

Theorem 1.1.1. (Cauchy’s Integral Theorem) Let D be a simply connected region,
T aloop in D, and f an analytic function on D. Then

/rf(Z)dZ =0.

Proof. Since D is simply connected, the loop I'" can be deformed to a point, and
the integral over a point is zero. O

1.2. The Green’s Theorem approach. In this subsection we will give a different
proof of Theorem 1.1.1 than the one we above. This alternative proof uses Green’s
Theorem from vector calculus. Before we start on that we wish to state a purely
topological fact.

Proposition 1.2.1. A domain D is simply connected if for every simple loop T in
D, the interior of " lies in D.

We omit the proof of this topological fact. It is intuitively obvious. ([l
Proof of Theorem 1.1.1 using Green’s Theorem. Suppose
F(z,y) = V(z,y)i+ W(z,y)j

is a vector field on D, with V' and W having continuous first partial derivatives on
D, and I is a simple loop in D oriented in the positive direction. Let R be the
interior of I'. Since D is simply connected, R lies inside D. Green’s Theorem is the
statement that the following equality holds
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The left side is the line integral [ F - ds.
Coming to Theorem 1.1.1, suppose we write our analytic function f on D as
f = u+ iv where u and v are the real and imaginary parts of f. We will assume
that « and v have continuous first partial derivatives. (We assumed this in the
earlier proof of the invariance of integrals too.) Let I' be a simple loop and suppose
it is oriented positively, and let R be its interior. By the definition given on page 4
of Lecture 12, we know [i. f(2)dz is equal to [.(udx —vdy) +i [.(vdx +udy). This
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gives:

/F f(z)dz = /F(udx —vdy) + 1 /F(Uda: + udy)

ov  Ou ) ou v
R R
=0.

The second equality is via (1.2.2) and the third via the Cauchy-Riemann equations.
If T is negatively oriented then —I is positively oriented and since fr =— f—r we
see that in this case too fr f(z)dz = 0. Next if T is not a simple loop, it can be
broken up into a finite number of simple loops in D and so once again, we see that
Jr f(z)dz = 0.

This completes the alternative proof of Theorem 1.1.1 via Green’s Theorem. O

1.3. Antiderivatives and simply connected regions. Recall that we proved
that a continuous complex valued function f on a domain D has an antiderivative
on D if and only if fr f(2)dz =0 for all loops in D. An immediate corollary of this
and the Cauchy Integral Theorem (i.e. Theorem 1.1.1) is

Theorem 1.3.1. Let D be a simply connected domain. Every analytic function on
D has an antiderivative.

Examples 1.3.2. Here are some examples illustrating some of the results discussed
above.

1. We know that [, z7'dz = 2mi # 0, where C is the unit circle |z| = 1 oriented
in the positive direction. This proves, by Theorem 1.1.1, that C ~\ {0} is not
simply connected, for z~! is an analytic function on C ~\ {0}. It also shows that
1/z has no antiderivative on C \ {0}. FIGURE 1 may provide a more intuitive
explanation of reason the punctured plane C \ {0} is not simply connected.

FIGURE 1. The curve shown cannot be shrunk to a point in the
punctured plane C ~\ {0}.



2. The set D = C \ (—o0, 0] is simply connected. Indeed, let T' be a loop in
D, say with parameterization ((t), t € [0, 1]. Set z(s,t) = s+ (1 — s)((¥)
for (s, t) € [0, 1] x [0, 1]. It is easy to check that z(s,t) lies in D for every
(s, t) €10, 1] x [0, 1]. In fact z(s, t) lies in the line segment joining {(¢) to z = 1
(see FIGURE 2). Moreover, it gives a deformation of T to the point 1.

2t) = 2Co,t)

FIGURE 2. For s € [0, 1], z(s,t) = s+ (1 — s)¢(¢) lies in the line
segment joining ((t) to 1, and so lies in C \ (—o0, 0].

By Theorem 1.3.1 1/z must have an antiderivative on D. Two antiderivatives
of 1/z differ by a constant, and if we know the value of the antiderivative at
any one point in D, we know it everywhere. The antiderivative which is zero at
z =1 is the principal logarithm Log.

1.3.3. Suppose I is a simple loop, €2 its interior, and f a function which is analytic
in an open set U which contains  UT'. Then there is simply connected domain
D which is sandwiched between QUT and U: QUT C D C U. An immediate
consequence is this: If one has a function f which is analytic on 2 and at each
point of I" (i.e. analytic in a neighbourhood od each point of I'), then

/Ff(z)dz = 0.

The proof is that, we can find a simply connected domain D containing I', and
Cauchy’s Integral formula applies to all loops in D.

2. A fundamental inequality

2.1. The absolute value of an integral. Let g: [a,b] — C be a continuous

function. We know that fab g(t)dt is the limit of sums of the form ), g(¢)(t; —ti—1)
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where

pra=ty<t; <---<t,=0b
is a partition of the interval [a, b] into subintervals, and ¢} is any point in [t;_1, t;].
More precisely, if u(p) is the maximum length of the subintervals in g, then

b n
t)dt = lim tr ti — ti_ .
[ stta= tim > gttt = i)

Now [0 g5 (i —tiz1)| < Do qlg(tF)(ti — ti—1)| by the triangle inequality.
Taking limits as u(p) — 0, we get
b
< [lawiar

/abg(t)dt

2.2. The length of a contour. Let z(t), t € [a,b] be a parameterization of a
contour I'. Suppose we write z(t) = z(t) + iy(t). From vector calculus we know
that the length ¢(T") of T is given by the formula

P fdem? )
z(r)_/a {dt +dt} dt.

2 2
Since |2/ ()] = dafi(tt) + d%(tt) , we get

b
(2.2.1) or) = / 12/ (1) dt.

The following is a crucial result

(2.1.1)

Theorem 2.2.2. Let I' be a contour and f a continuous complex-valued function
on T'. Suppose M is a real number such that |f(2)] < M for all z € T'. Then

/ J(2)dz| < Me(r)
I

Proof. Let z(t), t € [a, b] be a parameterization of I'. Then

‘/Ff(z)dz‘ - /bf(z(t))z’ Pt

/\f D@l (by (2.1.1))

= Mé (by (2.2.1))
This is the inequality we had to establish. O

3. The Cauchy Integral Formula

3.1. Let D be a simply connected domain, I" a simple loop in D oriented in the

positive direction, ) the interior of I'. Since D is simply connected, € is a subset

of D. Next let zp be a point in 2. We can find a positive number r small enough

that the closed disc {z | |z — 29| < r} of radius r centred at zp lies entirely in Q.
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Let C,. be circle |z — 29| = r oriented positively. It is not hard to see that if h is an
analytic function on D \ {z} then

(3.1.1) /F h(z)dz = /C h(z)dz

r

This can be seen in two ways. Either note that I" can be deformed to C, in D~ {z}.
This is a topological fact which is intuitively clear. See, for example, FIGURE 3.

F1GURE 3. T and C, are deformable to each other in D \ {z}.

Another way is to break up the area between the two curves into two simply
connected regions.

FIGURE 4. Breaking up the region between I' and C, into two pieces.

Now let T';, be the left loop determined by the “left sides” of I' and C). and the
two green curves above.
Similarly one has the right loop I'g.
Since I', and ' are simple loops and h is analytic in their interiors and on
them, [ h(2)dz = [ h(z)dz =0 (see 1.3.3). It is easy to see that we have the
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FIGURE 5. The contour I',.

FI1GURE 6. The contour I'g.

following relationship: [ h(z)dz+ [ h(z)dz = [ h(z)dz— [ h(z)dz. From this
it follows that [ h(z)dz — [, h(z)dz =0, proving (3.1.1)
Now suppose f is analytic on D. Define a new function g: D~ {z} by the rule:

f(z) = f(=0)

h D
po— when z € D\ {2}

(3.1.2) g(z) =
1'(20) when z = zg
It is clear that g is analytic on D ~\ {zo}. Moreover,
lim g(z) = lim f2) = f(z0) = f'(20) = g(20).

Z— 20 Z—20 z — ZO
Thus g is continuous at zy. Thus g is continuous on D, in particular on the set
QUT. Now QUT is a closed and bounded set, and so every continuous real function
on it is bounded, and hence |g| is bounded on Q@ UT. In other words we have a
positive number M such that

(3.1.3) lg(2)] < M, Vz e QUT.
Since g is analytic on D \ {20}, by (3.1.1) we have [.g(2)dz = [, g(2)dz. It

follows that
[tz =| [ o210z
r Cr

Letting r | 0, we see that [, g(z)dz = 0. In other words, using the definition of g

in (3.1.2) we have
JECEC
r Z = Z0
6

< MU(Cy) = M(27r).




This means

f(z)dz:/r 1(z0) czzzf(zo)/F L

r %= 20 z— 20 z — 20
Once again usi_ng (3.1.1), with h(z) = 1/(2—20), we get (using the parameterization
2(t) = 20 + e, t €0, 2n] for C):

() . 1 B 1 o
pz—izodz_ f(zo)/F Z—Zodz_f(ZO)/cr Z_ZOdZ— (273) f(20),

In other words

(3.1.4) f(z0) = L ﬁdz.

21 Jp 2 — 2o

We re-state the above in the following way

Theorem 3.1.5. (Cauchy Integral Formula) Let D be a simply connected domain,
T' a simple loop in D oriented in the positive direction and f an analytic function
on D. Let Q) be the interior of I'. Then

f(z) L / 1) d¢, for z € Q.

:Tm FC_Z

Proof. This is just a re-statement of (3.1.4). O
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