LECTURE 13

Date of Lecture: March 3, 2022

1. Loops and the Jordan curve theorem

1.1. Loops. Recall that a contour Γ is either a single point z_{0} or a finite sequence of directed smooth curves $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ such that the terminal point of γ_{k} is the initial point of γ_{k+1} for $k=1, \ldots, n$. We often write $\Gamma=\gamma_{1}+\cdots+\gamma_{n}$ rather than $\Gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$.

Figure 1. A contour. The initial point is usually denoted z_{I} and the terminal point z_{T}
Γ is said to be a closed contour or a loop if its initial and terminal points coincide. A simple closed contour or a simple loop is a loop which has no multiple points other than its initial (which is also its terminal) point. We also use the term loop or closed curve for undirected curves whose initial and terminal points are the same.

Figure 2. Two loops. The one on the left is not a simple loop, while the one on the right is.

The main theorem concerning simple loops is Jordan's Curve Theorem which is the following theorem:

Theorem 1.1.1. A simple loop separates the complex plane into two domains, one bounded and the other unbounded, each having the loop as its boundary. The bounded domain is called the interior of the loop and the unbounded domain the exterior.

We can use the Jordan curve theorem to define the positive orientation of a simple loop. If the simple loop Γ is directed in such a way that the interior lies to the left as one travels in the direction of the directed loop, then Γ is said to be positively oriented. Otherwise (i.e. when the interior falls to the left as one traverses the directed loop), Γ is said to be negatively oriented.

We will not be supplying a proof of this theorem, since it is an advanced theorem beyond the scope of this course.

Figure 3. The simple loop on the left is positively oriented. The loop on the right is also simple, but working out the interior and exterior is a little more complicated. Check that the point P is in the exterior and the point Q is in the interior.

2. Path independence

2.1. Path independence and antiderivatives. In Lecture 7 (see page 6 of that lecture), we proved that if f is a continuous complex-valued function on a domain D such that f has an antiderivative F on D (i.e. $F^{\prime}(z)=f(z)$), then for any contour Γ in D with initial point z_{I} and terminal point z_{T} we have the formula

$$
\begin{equation*}
\int_{\Gamma} f(z) d z=F\left(z_{T}\right)-F\left(z_{I}\right) \tag{2.1.1}
\end{equation*}
$$

In other words, the integral $\int_{\Gamma} f(z) d z$ is path independent, i.e. it only depends upon f and the end points of Γ and not on Γ itself. Here is the Theorem we are interested in.

Theorem 2.1.2. Let f be continuous on a domain D. The following are equivalent.
(a) f has an antiderivative on D.
(b) $\int_{\Gamma} f(z) d z=0$ for every loop Γ in D.
(c) The contour integrals of f are independent of path, i.e. if Γ_{1} and Γ_{2} are two contours in D with the same initial points and the same terminal points, then $\int_{\Gamma_{1}} f(z) d z=\int_{\Gamma_{2}} f(z) d z$.

Proof. Assume (a). Then (b) must be true by formula (2.1.1), since for a loop Γ, $z_{I}=z_{T}$.

Now assume (b) is true. Suppose Γ_{1} and Γ_{2} have the same initial and terminal points. Then $\Gamma_{1}-\Gamma_{2}$ is a loop, and so by (b), $\int_{\Gamma} f(z) d z=0$. This means $\int_{\Gamma_{1}} f(z) d z-\int_{\Gamma_{2}} f(z) d z=0$, giving (c).

Figure 4. $\Gamma=\Gamma_{1}-\Gamma_{2}$ is a loop.
We will now assume (c) and prove (a). Pick a point z_{0} in D and fix it. Since D is a domain, it is connected. Let z be a point in D. Since D is connected, we have a contour Γ in D starting at z_{0} and terminating at z. Define

$$
F(z)=\int_{\Gamma} f(z) d z
$$

By our assumption (c), the above integral does not depend on the contour Γ, so long as it starts at z_{0} and terminates at z.

Let B be a small circular neighbourhood of z in D (since D is open, it is always possible to find such a $B)$. Let Δz be such that $|\Delta z|$ is small enough that $z+\Delta z$ lies in B. Let Γ_{1} be the line segment joining z to $z+\Delta z$. Then $\Gamma+\Gamma_{1}$ is a contour in D whose initial point is z_{0} and terminal point is $z+\Delta z$. (See Figure 5.)

Figure 5.

By definition of F this means

$$
F(z+\Delta z)=\int_{\Gamma} f(z) d z+\int_{\Gamma_{1}} f(z) d z=F(z)+\int_{\Gamma_{1}} f(z) d z
$$

It follows that

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z}=\frac{\int_{\Gamma_{1}} f(z) d z}{\Delta z}
$$

Now Γ_{1} can be parameterized as: $z(t)=z+t \Delta z, 0 \leq t \leq 1$. Thus

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z}=\frac{\int_{0}^{1} f(z+t \Delta z)(\Delta z) d t}{\Delta z}=\int_{0}^{1} f(z+t \Delta z) d t
$$

Since f is continuous, $f(z+t \Delta z) \approx f(z)$ for Δz such that $|\Delta z|$ is small, where the symbol \approx is for "approximately". In fact, $\lim _{\Delta z \rightarrow 0} f(z+\Delta z)=f(z)$. This means that if $|\Delta z|$ is small, then

$$
\frac{F(z+\Delta z)-F(z)}{\Delta z} \approx \int_{0}^{1} f(z) d t=f(z) \int_{0}^{1} d t=f(z)
$$

Letting $\Delta z \rightarrow 0$ we get

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z)
$$

Thus F is differentiable at all points in D and $F^{\prime}(z)=f(z)$. This proves (a), assuming (c).
2.1.3. Remark. The argument given towards the end of the above proof can be made rigorous using an $\varepsilon-\delta$ argument. By continuity of f we know that for every $\varepsilon>0$ there is a $\delta>0$ such that $|f(z+h)-f(z)|<\varepsilon$ whenever $|h|<\delta$. Now if $|\Delta z|<\delta$, then $|t \Delta z|<\delta$ for every $0 \leq t \leq 1$. It follows that $|f(z+t \Delta z)-f(z)|<\varepsilon$ whenever $|D e z|<\delta$ and $0 \leq t \leq 1$. How do we proceed from here? Think it through and see if you can show that $\left|\int_{0}^{1} f(z+t \Delta z) d t-\int_{0}^{1} f(z) d t\right|<\varepsilon$ whenever $|\Delta z|<\delta$. Note that the variable of integration in both the integrals above is t and not z. After you show that, how will you show that $F^{\prime}=f$?

Examples 2.1.4. Here are some examples illustrating the path independence theorem.

1. Let D be the complex plane punctured at the origin, i.e. $D=\mathbb{C} \backslash\{0\}$. Let C be the circle $|z|=1$ oriented in a positively.

Figure 6.

We know that

$$
\int_{C} \frac{1}{z} d z=2 \pi i \neq 0
$$

So by Theorem 2.1.2, $1 / z$ does not have an antiderivative on D.
2. The same reasoning can be applied to the second problem in Homework 6 (this is problem 14 from section 3.3 of the text).

Figure 7. The annulus $D=\{z|1<|z|<2\}$. The red oriented circle is $|z|=3 / 2$ oriented positively.
)

Let Γ be the circle $|z|=\frac{3}{2}$ oriented positively. Then Γ lies in the region D given by $1<|z|<2$ (see Figure 7). The integral $\int_{\Gamma} z^{-1} d z=2 \pi i \neq 0$, and so by Theorem 2.1.2, $1 / z$ does not have an antiderivative on D.

3. Deformation of loops

3.1. Intuitive ideas. Suppose R and r are two positive real numbers with $R>r$. Let Γ_{0} be the circle $|z|=R$, and Γ_{1} the circle $|z|=r$, both oriented positively.

Figure 8. Γ_{0} is the outer circle, Γ_{1} is the inner circle, and Γ_{s} a "variable circle" between Γ_{0} and Γ_{1}.

From Figure 8 it seems intuitive that we can "shrink" or "deform" Γ_{0} in some continuous fashion to Γ_{1} with the intermediate stages of the "deformation" being circles centred at $z=0$ of radii between r and R. In fact for $0 \leq s \leq 1$ we can find intermediate circles Γ_{s} as in the picture which in mathematical way captures this deformation process. For $s \in[0,1]$, define, as Andy Hsiao suggested in class, Γ_{s} to be the circle $|z|=s r+(1-s) R$ oriented in the positive direction. Let

$$
z(s, t)=\{s r+(1-s) R\} e^{i 2 \pi t}, \quad 0 \leq t \leq 1
$$

Then $t \mapsto z(s, t), 0 \leq t \leq 1$ is a parameterization of Γ_{s} for $0 \leq s \leq 1$. Note that as $s \rightarrow 0$ the red positively oriented circle Γ_{s} in the picture approaches the oriented circle Γ_{0}, and as $s \rightarrow 1, \Gamma_{s}$ approach the oriented circle Γ_{1}.

Similarly, if D is the complex plane, it is intuitively clear that we can shrink Γ_{1} to a point, namely $z=0$. A little more mathematically, if for each $s \in[0,1]$ and each $t \in[0,1]$ we set $z(s, t)=s e^{i 2 \pi t}$, then for each fixed $0<s \leq 1$, the mapping $t \mapsto z(s, t)$ gives us gives us the circle $|z|=s$ oriented in the positive direction. Call this oriented circle Γ_{s}. When $s=0$, we just get the origin $z=0$. As $s \downarrow 0$ we see that $\Gamma_{s} \rightarrow\{0\}$. In other words the unit circle centred at $z=0$ can be deformed to its centre. Figure 9 below may help visualise the situation.

Figure 9. Deforming the circle of radius 1 centred at $z=0$ to the origin in the complex plane.
3.2. Deformations. Roughly, in accordance with the examples in §3.1, a deformation of a loop Γ_{0} to a loop Γ_{1} in a domain D looks like this picture.

Figure 10. Deformation of Γ_{0} to Γ_{1} through intermediary loops Γ_{s}.
This motivates the following more rigorous definition:

Definition 3.2.1. Let Γ_{0} and Γ_{1} be loops in a region D in the complex plane. Γ_{0} is said to be continuously deformable to Γ_{1} if there is a continuous function

$$
z:[0,1] \times[0,1] \longrightarrow D ; \quad(s, t) \mapsto z(s, t)
$$

such that
(1) For each fixed $s \in[0,1]$, the function $t \mapsto z(s, t), 0 \leq t \leq 1$, parameterizes a loop Γ_{s} in D;
(2) $t \mapsto z(0, t), 0 \leq t \leq 1$, parameterizes Γ_{0};
(3) $t \mapsto z(1, t), 0 \leq t \leq 1$, parameterizes Γ_{1}.

In the above situation we also also say that Γ_{1} is a deformation of Γ_{0} in D. Sometimes the function $(s, t) \mapsto z(s, t)$ is called a deformation of Γ_{0} to Γ_{1} in D.
3.2.2. Let Γ_{0}, Γ_{1} and Γ_{2} be three loops in a domain D. The set $[0,1] \times[0,1]$ is called the closed unit square or just the unit square in \mathbb{C}. Here are three basic observations.

1. Clearly Γ_{0} is a deformation of itself. Indeed if $\zeta(t), 0 \leq t \leq 1$ is a parameretization of Γ_{0}, then take $z(s, t)$ to be the function given by $z(s, t)=\zeta(t)$ on the unit square.
2. If Γ_{1} is a deformation of Γ_{0} in D, then Γ_{0} is a deformation of Γ_{1} in D. To see this, suppose $z(s, t)$ in the continuous function on the unit square which gives the deformation. Then the function ζ on the unit square given by $\zeta(s, t)=z(1-s, t)$ gives the deformation of Γ_{1} to Γ_{0}.
3. Suppose Γ_{1} is a deformation of Γ_{0} in D, say via a continuous function z_{1} on the unit square, and Γ_{2} is a deformation of Γ_{1} in D, say via a continuous function z_{2} on the unit square, then define $(s, t) \mapsto z(s, t)$ on the unit square as follows:

$$
z(s, t)= \begin{cases}z_{1}(2 s, t) & \text { when }(s, t) \in[0,1 / 2] \times[0,1] \\ z_{2}(2 s-1, t) & \text { when }(s, t) \in[1 / 2,1] \times[0,1]\end{cases}
$$

It is easy to check that that $z(s, t)$ gives a deformation of Γ_{0} to Γ_{2}.
3.3. Simply connected regions. A domain D in the complex plane is called simply connected if every loop in D can be deformed to a point. (The intermediary loops Γ_{s} are also required to be in D.) A domain which is not simply connected is often called a mulitiply connected domain,

Examples 3.3.1. Here are some examples of simply connected and multiply connected domains

1. The complex plane \mathbb{C} is simply connected. To see this, let Γ_{0} be any loop, and let $z(t), 0 \leq t \leq 1$ be a parameterization of Γ_{0}. Set

$$
z(s, t)=(1-s) z(t), \quad(s, t) \in[0,1] \times[0,1]
$$

I leave it to you to check that this gives a deformation of Γ_{0} to a point.
2. The open disc $B_{r}\left(z_{0}\right)$ of radius r centred at a point z_{0} is also simply connected, by essentially the same argument as above. Suppose Γ_{0} is a loop in $B_{r}\left(z_{0}\right)$, and let $z(t), 0 \leq t \leq 1$ be a parameterization of Γ_{0}. Set $z(s, t)=z_{0}+(1-s)\left(z(t)-z_{0}\right)$ for $(s, t) \in[0,1] \times[0,1]$. If $(s, t) \in[0,1] \times[0,1]$, we have $\left|z(s, t)-z_{0}\right|=$ $(1-s)\left|z(t)-z_{0}\right| \leq\left|z(t)-z_{0}\right|<r$. We have just proved that $z(s, t)$ lies in the open disc $B_{r}\left(z_{0}\right)$ for every (s, t) in the unit square $[0,1] \times[0,1]$. It is now clear

Figure 11. The loop Γ_{0} can be deformed to a point in a simply connected domain.
that $(s, t) \mapsto z(s, t)$ gives a deformation of Γ_{0} to the point z_{0}.
3. The annulus in Figure 7 is not simply connected. The red circle shown in the figure cannot be deformed within the annulus to a point.
3.4. The Deformation Ivariance Theorem. Here is the main theorem concerning deformations and contour integrals of analytic functions.

Theorem 3.4.1. Let Γ_{0} and Γ_{1} be loops in a domain D such that Γ_{1} is a deformation of Γ_{0} in D. Then for every analytic function f on D we have

$$
\int_{\Gamma_{0}} f(z) d z=\int_{\Gamma_{1}} f(z) d z
$$

Proof. Let f be analytic on D. We give a weak version of the proof. We will assume two things
(i) The function $(s, t) \rightarrow z(s, t)$ giving the continuous deformation from Γ_{0} to Γ_{1} has continuous partial derivatives with respect to s and t. This has an important consequence, namely

$$
\frac{\partial^{2} z}{\partial s \partial t}(s, t)=\frac{\partial^{2} z}{\partial t \partial s}(s, t)
$$

(ii) We will also assume that the derivative f^{\prime} is continuous.

The assumption in (i) can be dropped, but the proof requires techniques from topology and analysis beyond the scope of this course. As for the assumption in (ii), in fact we do not need to assume this, because a famous result of Goursat shows that the derivative of an analytic function is always continuous. However, once again, the proof of Goursat's result is advanced and beyond the scope of this course.

Fix $s \in[0,1]$. Set $I_{s}=\int_{\Gamma_{s}} f(z) d z$. Note that

$$
I_{s}=\int_{0}^{1} f\left(z(s, t) \frac{\partial z}{\partial t}(s, t) d t .\right.
$$

We have to show that $I_{0}=I_{1}$. We will do this by showing that $d I_{s} / d s=0$ for $s \in[0,1]$, so that $s \mapsto I_{s}$ is a constant, whence $I_{0}=I_{1}$.

Under our assumptions (i) and (ii), the integrand $f\left(z(s, t) \frac{\partial z}{\partial t}(s, t)\right.$ is continuously differentiable in s and this condition allows us the differentiate I_{s} under the integral sign with respect to s. Thus we have:

$$
\begin{aligned}
\frac{d I_{s}}{d s} & =\frac{d}{d s} \int_{0}^{1} f(z(s, t)) \frac{\partial z}{\partial t}(s, t) d t \\
& =\int_{0}^{1} \frac{\partial}{\partial s}\left(f(z(s, t)) \frac{\partial z}{\partial t}(s, t)\right) d t \\
& =\int_{0}^{1}\left(f^{\prime}(z(s, t)) \frac{\partial z}{\partial s}(s, t) \frac{\partial z}{\partial t}(s, t)+f(z, t) \frac{\partial^{2} z}{\partial s \partial t}(s, t)\right) d t
\end{aligned}
$$

Now, under our assumptions, the mixed partials $\frac{\partial^{2} z}{\partial s \partial t}(s, t)$ and $\frac{\partial^{2} z}{\partial t \partial s}(s, t)$ are equal, and hence

$$
f^{\prime}(z(s, t)) \frac{\partial z}{\partial s}(s, t) \frac{\partial z}{\partial t}(s, t)+f(z, t) \frac{\partial^{2} z}{\partial s \partial t}(s, t)=\frac{\partial}{\partial t}\left(f(z(s, t)) \frac{\partial z}{\partial s}(s, t)\right) .
$$

This means

$$
\begin{aligned}
\frac{d I_{s}}{d s} & =\int_{0}^{1} \frac{\partial}{\partial t}\left(f(z(s, t)) \frac{\partial z}{\partial s}(s, t)\right) d t \\
& =f(z(s, 1)) \frac{\partial z}{\partial s}(s, 1)-f(z(s, 0)) \frac{\partial z}{\partial s}(s, 0)
\end{aligned}
$$

Now, $z(s, 1)=z(s, 0)$ for all s in $[0,1]$, and hence $f(z(s, 1))=f(z(s, 0))$ and $\frac{\partial z}{\partial s}(s, 1)=\frac{\partial z}{\partial s}(z, 0)$. This proves that I_{s} is identically zero for $s \in[0,1]$, showing that $I_{0}=I_{1}$, as required.

