
LECTURE 13

Date of Lecture: March 3, 2022

1. Loops and the Jordan curve theorem

1.1. Loops. Recall that a contour Γ is either a single point z0 or a finite sequence
of directed smooth curves (γ1, . . . , γn) such that the terminal point of γk is the
initial point of γk+1 for k = 1, . . . , n. We often write Γ = γ1 + · · ·+ γn rather than
Γ = (γ1, . . . , γn).

Figure 1. A contour. The initial point is usually denoted zI and
the terminal point zT

Γ is said to be a closed contour or a loop if its initial and terminal points coincide.
A simple closed contour or a simple loop is a loop which has no multiple points
other than its initial (which is also its terminal) point. We also use the term loop or
closed curve for undirected curves whose initial and terminal points are the same.

Figure 2. Two loops. The one on the left is not a simple loop,
while the one on the right is.

The main theorem concerning simple loops is Jordan’s Curve Theorem which is
the following theorem:

1



Theorem 1.1.1. A simple loop separates the complex plane into two domains,
one bounded and the other unbounded, each having the loop as its boundary. The
bounded domain is called the interior of the loop and the unbounded domain the
exterior.

We can use the Jordan curve theorem to define the positive orientation of a
simple loop. If the simple loop Γ is directed in such a way that the interior lies
to the left as one travels in the direction of the directed loop, then Γ is said to be
positively oriented. Otherwise (i.e. when the interior falls to the left as one traverses
the directed loop), Γ is said to be negatively oriented.

We will not be supplying a proof of this theorem, since it is an advanced theorem
beyond the scope of this course.

Figure 3. The simple loop on the left is positively oriented. The
loop on the right is also simple, but working out the interior and
exterior is a little more complicated. Check that the point P is in
the exterior and the point Q is in the interior.

2. Path independence

2.1. Path independence and antiderivatives. In Lecture 7 (see page 6 of that
lecture), we proved that if f is a continuous complex-valued function on a domain D
such that f has an antiderivative F on D (i.e. F ′(z) = f(z)), then for any contour
Γ in D with initial point zI and terminal point zT we have the formula

(2.1.1)

∫
Γ

f(z)dz = F (zT )− F (zI).

In other words, the integral
∫

Γ
f(z)dz is path independent, i.e. it only depends upon

f and the end points of Γ and not on Γ itself. Here is the Theorem we are interested
in.

Theorem 2.1.2. Let f be continuous on a domain D. The following are equivalent.

(a) f has an antiderivative on D.
(b)

∫
Γ
f(z)dz = 0 for every loop Γ in D.

(c) The contour integrals of f are independent of path, i.e. if Γ1 and Γ2 are two
contours in D with the same initial points and the same terminal points, then∫

Γ1
f(z)dz =

∫
Γ2
f(z)dz.
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Proof. Assume (a). Then (b) must be true by formula (2.1.1), since for a loop Γ,
zI = zT .

Now assume (b) is true. Suppose Γ1 and Γ2 have the same initial and termi-
nal points. Then Γ1 − Γ2 is a loop, and so by (b),

∫
Γ
f(z)dz = 0. This means∫

Γ1
f(z)dz −

∫
Γ2
f(z)dz = 0, giving (c).

Figure 4. Γ = Γ1 − Γ2 is a loop.

We will now assume (c) and prove (a). Pick a point z0 in D and fix it. Since D
is a domain, it is connected. Let z be a point in D. Since D is connected, we have
a contour Γ in D starting at z0 and terminating at z. Define

F (z) =

∫
Γ

f(z)dz.

By our assumption (c), the above integral does not depend on the contour Γ, so
long as it starts at z0 and terminates at z.

Let B be a small circular neighbourhood of z in D (since D is open, it is always
possible to find such a B). Let ∆z be such that |∆z| is small enough that z + ∆z
lies in B. Let Γ1 be the line segment joining z to z+ ∆z. Then Γ + Γ1 is a contour
in D whose initial point is z0 and terminal point is z + ∆z. (See Figure 5.)

Figure 5.
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By definition of F this means

F (z + ∆z) =

∫
Γ

f(z)dz +

∫
Γ1

f(z)dz = F (z) +

∫
Γ1

f(z)dz.

It follows that

F (z + ∆z)− F (z)

∆z
=

∫
Γ1
f(z)dz

∆z
.

Now Γ1 can be parameterized as: z(t) = z + t∆z, 0 ≤ t ≤ 1. Thus

F (z + ∆z)− F (z)

∆z
=

∫ 1

0
f(z + t∆z)(∆z)dt

∆z
=

∫ 1

0

f(z + t∆z)dt.

Since f is continuous, f(z + t∆z) ≈ f(z) for ∆z such that |∆z| is small, where the
symbol ≈ is for “approximately”. In fact, lim∆z→0 f(z + ∆z) = f(z). This means
that if |∆z| is small, then

F (z + ∆z)− F (z)

∆z
≈
∫ 1

0

f(z)dt = f(z)

∫ 1

0

dt = f(z).

Letting ∆z → 0 we get

lim
∆z→0

F (z + ∆z)− F (z)

∆z
= f(z).

Thus F is differentiable at all points in D and F ′(z) = f(z). This proves (a),
assuming (c). �

2.1.3. Remark. The argument given towards the end of the above proof can be
made rigorous using an ε-δ argument. By continuity of f we know that for every
ε > 0 there is a δ > 0 such that |f(z + h)− f(z)| < ε whenever |h| < δ. Now if
|∆z| < δ, then |t∆z| < δ for every 0 ≤ t ≤ 1. It follows that |f(z + t∆z)− f(z)| < ε
whenever |Dez| < δ and 0 ≤ t ≤ 1. How do we proceed from here? Think it through

and see if you can show that |
∫ 1

0
f(z + t∆z)dt−

∫ 1

0
f(z)dt| < ε whenever |∆z| < δ.

Note that the variable of integration in both the integrals above is t and not z.
After you show that, how will you show that F ′ = f?

Examples 2.1.4. Here are some examples illustrating the path independence the-
orem.

1. Let D be the complex plane punctured at the origin, i.e. D = C r {0}. Let C
be the circle |z| = 1 oriented in a positively.

Figure 6.
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We know that ∫
C

1

z
dz = 2πi 6= 0.

So by Theorem 2.1.2, 1/z does not have an antiderivative on D.
2. The same reasoning can be applied to the second problem in Homework 6 (this

is problem 14 from section 3.3 of the text).

Figure 7. The annulus D = {z | 1 < |z| < 2}. The red oriented
circle is |z| = 3/2 oriented positively.

)

Let Γ be the circle |z| = 3
2 oriented positively. Then Γ lies in the region D

given by 1 < |z| < 2 (see Figure 7). The integral
∫

Γ
z−1dz = 2πi 6= 0, and so

by Theorem 2.1.2, 1/z does not have an antiderivative on D.

3. Deformation of loops

3.1. Intuitive ideas. Suppose R and r are two positive real numbers with R > r.
Let Γ0 be the circle |z| = R, and Γ1 the circle |z| = r, both oriented positively.

Figure 8. Γ0 is the outer circle, Γ1 is the inner circle, and Γs a
“variable circle” between Γ0 and Γ1.
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From Figure 8 it seems intuitive that we can “shrink” or “deform” Γ0 in some
continuous fashion to Γ1 with the intermediate stages of the “deformation” being
circles centred at z = 0 of radii between r and R. In fact for 0 ≤ s ≤ 1 we can find
intermediate circles Γs as in the picture which in mathematical way captures this
deformation process. For s ∈ [0, 1], define, as Andy Hsiao suggested in class, Γs to
be the circle |z| = sr + (1− s)R oriented in the positive direction. Let

z(s, t) = {sr + (1− s)R}ei2πt, 0 ≤ t ≤ 1.

Then t 7→ z(s, t), 0 ≤ t ≤ 1 is a parameterization of Γs for 0 ≤ s ≤ 1. Note that as
s → 0 the red positively oriented circle Γs in the picture approaches the oriented
circle Γ0, and as s→ 1, Γs approach the oriented circle Γ1.

Similarly, if D is the complex plane, it is intuitively clear that we can shrink Γ1

to a point, namely z = 0. A little more mathematically, if for each s ∈ [0, 1] and
each t ∈ [0, 1] we set z(s, t) = sei2πt, then for each fixed 0 < s ≤ 1, the mapping
t 7→ z(s, t) gives us gives us the circle |z| = s oriented in the positive direction.
Call this oriented circle Γs. When s = 0, we just get the origin z = 0. As s ↓ 0 we
see that Γs → {0}. In other words the unit circle centred at z = 0 can be deformed
to its centre. Figure 9 below may help visualise the situation.

Figure 9. Deforming the circle of radius 1 centred at z = 0 to
the origin in the complex plane.

3.2. Deformations. Roughly, in accordance with the examples in § 3.1, a defor-
mation of a loop Γ0 to a loop Γ1 in a domain D looks like this picture.

Figure 10. Deformation of Γ0 to Γ1 through intermediary loops Γs.

This motivates the following more rigorous definition:
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Definition 3.2.1. Let Γ0 and Γ1 be loops in a region D in the complex plane. Γ0

is said to be continuously deformable to Γ1 if there is a continuous function

z : [0, 1]× [0, 1] −→ D; (s, t) 7→ z(s, t)

such that

(1) For each fixed s ∈ [0, 1], the function t 7→ z(s, t), 0 ≤ t ≤ 1, parameterizes a
loop Γs in D;

(2) t 7→ z(0, t), 0 ≤ t ≤ 1, parameterizes Γ0;
(3) t 7→ z(1, t), 0 ≤ t ≤ 1, parameterizes Γ1.

In the above situation we also also say that Γ1 is a deformation of Γ0 in D. Some-
times the function (s, t) 7→ z(s, t) is called a deformation of Γ0 to Γ1 in D.

3.2.2. Let Γ0, Γ1 and Γ2 be three loops in a domain D. The set [0, 1] × [0, 1]
is called the closed unit square or just the unit square in C. Here are three basic
observations.

1. Clearly Γ0 is a deformation of itself. Indeed if ζ(t), 0 ≤ t ≤ 1 is a parameretiza-
tion of Γ0, then take z(s, t) to be the function given by z(s, t) = ζ(t) on the
unit square.

2. If Γ1 is a deformation of Γ0 in D, then Γ0 is a deformation of Γ1 in D. To see this,
suppose z(s, t) in the continuous function on the unit square which gives the
deformation. Then the function ζ on the unit square given by ζ(s, t) = z(1−s, t)
gives the deformation of Γ1 to Γ0.

3. Suppose Γ1 is a deformation of Γ0 in D, say via a continuous function z1 on the
unit square, and Γ2 is a deformation of Γ1 in D, say via a continuous function
z2 on the unit square, then define (s, t) 7→ z(s, t) on the unit square as follows:

z(s, t) =

{
z1(2s, t) when (s, t) ∈ [0, 1/2]× [0, 1];

z2(2s− 1, t) when (s, t) ∈ [1/2, 1]× [0, 1].

It is easy to check that that z(s, t) gives a deformation of Γ0 to Γ2.

3.3. Simply connected regions. A domain D in the complex plane is called
simply connected if every loop in D can be deformed to a point. (The intermediary
loops Γs are also required to be in D.) A domain which is not simply connected is
often called a mulitiply connected domain,

Examples 3.3.1. Here are some examples of simply connected and multiply con-
nected domains

1. The complex plane C is simply connected. To see this, let Γ0 be any loop, and
let z(t), 0 ≤ t ≤ 1 be a parameterization of Γ0. Set

z(s, t) = (1− s)z(t), (s, t) ∈ [0, 1]× [0, 1].

I leave it to you to check that this gives a deformation of Γ0 to a point.

2. The open discBr(z0) of radius r centred at a point z0 is also simply connected, by
essentially the same argument as above. Suppose Γ0 is a loop in Br(z0), and let
z(t), 0 ≤ t ≤ 1 be a parameterization of Γ0. Set z(s, t) = z0 + (1− s)(z(t)− z0)
for (s, t) ∈ [0, 1] × [0, 1]. If (s, t) ∈ [0, 1] × [0, 1], we have |z(s, t)− z0| =
(1 − s)|z(t)− z0| ≤ |z(t)− z0| < r. We have just proved that z(s, t) lies in the
open disc Br(z0) for every (s, t) in the unit square [0, 1]× [0, 1]. It is now clear
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Figure 11. The loop Γ0 can be deformed to a point in a simply
connected domain.

that (s, t) 7→ z(s, t) gives a deformation of Γ0 to the point z0.

3. The annulus in Figure 7 is not simply connected. The red circle shown in the
figure cannot be deformed within the annulus to a point.

3.4. The Deformation Ivariance Theorem. Here is the main theorem concern-
ing deformations and contour integrals of analytic functions.

Theorem 3.4.1. Let Γ0 and Γ1 be loops in a domain D such that Γ1 is a defor-
mation of Γ0 in D. Then for every analytic function f on D we have∫

Γ0

f(z)dz =

∫
Γ1

f(z)dz.

Proof. Let f be analytic on D. We give a weak version of the proof. We will assume
two things

(i) The function (s, t) → z(s, t) giving the continuous deformation from Γ0 to
Γ1 has continuous partial derivatives with respect to s and t. This has an
important consequence, namely

∂2z

∂s∂t
(s, t) =

∂2z

∂t∂s
(s, t).

(ii) We will also assume that the derivative f ′ is continuous.

The assumption in (i) can be dropped, but the proof requires techniques from
topology and analysis beyond the scope of this course. As for the assumption in
(ii), in fact we do not need to assume this, because a famous result of Goursat
shows that the derivative of an analytic function is always continuous. However,
once again, the proof of Goursat’s result is advanced and beyond the scope of this
course.

Fix s ∈ [0, 1]. Set Is =
∫

Γs
f(z)dz. Note that

Is =

∫ 1

0

f(z(s, t)
∂z

∂t
(s, t)dt.
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We have to show that I0 = I1. We will do this by showing that dIs/ds = 0 for
s ∈ [0, 1], so that s 7→ Is is a constant, whence I0 = I1.

Under our assumptions (i) and (ii), the integrand f(z(s, t)∂z∂t (s, t) is continuously
differentiable in s and this condition allows us the differentiate Is under the integral
sign with respect to s. Thus we have:

dIs
ds

=
d

ds

∫ 1

0

f(z(s, t))
∂z

∂t
(s, t)dt

=

∫ 1

0

∂

∂s

(
f(z(s, t))

∂z

∂t
(s, t)

)
dt

=

∫ 1

0

(
f ′(z(s, t))

∂z

∂s
(s, t)

∂z

∂t
(s, t) + f(z, t)

∂2z

∂s∂t
(s, t)

)
dt

Now, under our assumptions, the mixed partials ∂2z
∂s∂t (s, t) and ∂2z

∂t∂s (s, t) are equal,
and hence

f ′(z(s, t))
∂z

∂s
(s, t)

∂z

∂t
(s, t) + f(z, t)

∂2z

∂s∂t
(s, t) =

∂

∂t

(
f(z(s, t))

∂z

∂s
(s, t)

)
.

This means

dIs
ds

=

∫ 1

0

∂

∂t

(
f(z(s, t))

∂z

∂s
(s, t)

)
dt

= f(z(s, 1))
∂z

∂s
(s, 1)− f(z(s, 0))

∂z

∂s
(s, 0).

Now, z(s, 1) = z(s, 0) for all s in [0, 1], and hence f(z(s, 1)) = f(z(s, 0)) and
∂z
∂s (s, 1) = ∂z

∂s (z, 0). This proves that Is is identically zero for s ∈ [0, 1], showing
that I0 = I1, as required. �
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