Poles and zeros of rational functions
Let

$$
R(z)=c \cdot \frac{(z-3)^{e_{1}} \cdots(z-3 m)^{e_{m}}}{\left(z-z_{1}\right)^{d_{1}} \cdots\left(z-z_{k}\right)^{d_{k}}}
$$

be a rational function with c a nou-zus constant, and $\xi_{1}, \ldots, \xi_{m}, z_{1}, \ldots, z_{k}$ distinct complex numbers.

- $3, \ldots, 3 \mathrm{~m}$ ane called the zeros of $R(z)$, with $3 j$ being a zero of order e_{j}.
- z_{1}, \ldots, z_{k} are called the poles of $R(z)$, watt z_{i} being a pole of order di.

Taylor form centreck at z_{0}
of

$$
p(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n}
$$

is a polynomial of degree n, and z_{0} is a complex number, we sow that we cam re-wite $p(z)$ as

$$
\begin{equation*}
p(z)=b_{0}+b_{1}\left(z-z_{0}\right)+b_{2}\left(z-z_{0}\right)^{2}+\ldots+b_{n}\left(z-z_{0}\right)^{n} \tag{x}
\end{equation*}
$$

and that b_{0}, \ldots, b_{n} are given by the formula

$$
b_{k}=\frac{p^{(k)}\left(z_{0}\right)}{k!}
$$

where $p^{(k)}(z)$ denotes the $k^{\frac{k t}{-}}$ derivative of p.
The form (x) is called the Taylor form A p centred at z_{0}. It is also callek the Taylor's expansion of p around z_{0}.

Example: Find the Taylor form of $p(z)=z^{5}$ centered at 3 .
Sols:
Method I : $p(z)=z^{5}, p^{\prime}(z)=5 z^{4}, p^{\prime \prime}(z)=20 z^{3}, p^{(3)}(z)=60 z^{2}$, $p^{(4)}(z)=120 z, \quad p^{(5)}(z)=120$.
Now $b_{k}=p^{(k)}(3) / k!$, and heme

$$
\begin{aligned}
& b_{0}=3^{5}, \quad b_{1}=5\left(3^{4}\right) / 1!, b_{2}=20\left(3^{3}\right) / 2!, b_{3}=60\left(3^{2}\right) / 3! \\
& b_{4}=120(3) / 4!, \quad b_{5}=\frac{120}{5!} .
\end{aligned}
$$

Thus $b_{0}=243, b_{1}=405, b_{2}=270, b_{3}=90, b_{4}=15, b_{5}=1$.
In ottien word e

$$
z^{5}=243+405(z-3)+270(z-3)^{2}+90(z-3)^{3}+15(z-3)^{4}+(z-3)^{5} .
$$

Taylor's form of z^{5} centered at ?

Method II: Use the binomial trover.

$$
\begin{aligned}
z^{5} & =[(z-3)+3]^{5} \\
& =\sum_{k=0}^{5}\binom{5}{k}(3)^{5-k}(z-3)^{k}
\end{aligned}
$$

Yon will get the same answer.
Either method is fine.
Arg, arg, Log, log, mattiple-valued fractions, branches
Recall that arg is a multiple-valuet furntion on $\mathbb{C},\{0\}$. so is log.

$$
\log z=\log |z|+i \operatorname{ang}(z)=\log r+i \theta \text { multi p ple-valuct. }
$$

Let $\tau \in \mathbb{R}$. Then $\arg _{\varepsilon}(z)$ is, by definition, the unique value of $\arg (z)$ lying in the interval $(\tau, \tau+2 \pi]$. The function arg τ is single-valued.
"Formulas"
$\left.\begin{array}{l}\text { (i) } \arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\operatorname{ang}\left(z_{2}\right) \\ \text { (ii) } \arg \left(\frac{z_{1}}{z_{2}}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right) \\ \text { (iii) } \log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right) \\ \text { (iv) } \log \left(\frac{z_{1}}{z_{2}}\right)=\log \left(z_{1}\right)-\log \left(z_{2}\right)\end{array}\right\} \begin{aligned} & \text { assignectation: if to any tanticalan values are } \\ & \text { so that the a value of terms then } \\ & \text { suction is the thine term }\end{aligned}$
Bruch art for Arg, Log, arg, \mathcal{L}_{2} : Recall that Arg is NOT continuous m the negative real axis (or at D). Two pointer z_{1} and z_{2} close to each other, with z_{1} in the $2^{\text {nd }}$ quad rant and z_{2} in the $3^{\text {rod, }}$ will have Arg values which are not doe: $\operatorname{Arg}\left(z_{1}\right) \approx \pi$, but Arg $\left(z_{2}\right) \approx-\pi$. This is why Arg ia not continuous on the negative real axis.

The "cut" along $(-\infty, 0]$ for Ny and Log is called a branch cut. we point ont that Arg $=$ arg $-\pi$, and arg $_{2}$ is discontinuous along the ray $\theta=\tau$ (we include 0 in the ray). Call this ray R_{τ}. The R_{τ} is called the touch eat for ange.

There is then a version \mathcal{O} logarithm for each τ, namely

$$
\mathcal{L}_{e}(z)=\log |z|+i \arg _{2}(z) .
$$

The Ray R_{c} is also a trounch out fer the above vasion of a logarithm, lie. 1 Le . Noble $\mathcal{Z}_{-\pi}=\log$. There different version of the logarittim are called broaches of the multiple-valued functions $\log (E)$.
$\mathcal{I}_{c}(z)$ is analytic outside its tranche ext and is discontimeons on it a branch eat R_{τ}. Morconen on $\mathbb{C}, R_{\mathcal{E}}$ we have

$$
\frac{d}{d z} \mathcal{L}_{\tau}(z)=\frac{1}{z}
$$

The prof is the some as the one we gave for the $\frac{d}{d z} \log (z)=\frac{1}{z}$. In this care just take $\theta=a y_{c}(z)$.

Definition: $F(z)$ is said to be a branch of a multiple-valued function $f(z)$ in a domain D if $F(z)$ is single-valued on D and has the property that for each $z \in D$, the value $F(z)$ is one of the values $\eta f(z)$. For example, $a^{\prime} g_{c}$ is a trough of arg, and L_{c} is a branch of \log.

Examples:

1. Is $|\cos z|$ bounded?

Ans: No. Ho re are the compentations:

$$
\cos (i y)=\frac{e^{i(i y)}+e^{-i(i g)}}{2}=\frac{e^{-y}+e^{y}}{2} \rightarrow \infty \text { as } y \rightarrow \infty \text {. }
$$

It follows that $\cos (z)$ is not bounded.
2. By the chain rule, if f and g are analytrr and the range of g is contained in the domain of f, then $f \circ g$ is analytru.
As an example

$$
f(z)=\cos \left(z^{3}\right)-e^{-7 z}+i z^{2}
$$

is entire.

Complex Powers
Let α and z be complex numbers with $z \neq 0$. Define z^{α} as the nulti-valuel expression

$$
z^{\alpha}=e^{\alpha \log z}
$$

Question: With the above definition, are all powers of 1 equal to ?

Contour Integration
Here is an informal introduction. A more for med introduction will happen in the next lecture.

A continuous arne could look like this:

The pen haonit left the paper (or, the electronic pencil has not left the tablet) while drawing the cure, making it "contimurns". How aver, there may well be sharp corners, lie. kinks.

A sloth curve will not have these kinks.

Smooth curve
A smooth curve is contimuins.

We would alro like our curves to not coos themsclue lite this

Que adieus this by paramatuizations ie. if a point on the curve is a function of time $x=x(t), y=y(t), a \leq t \leq b$, with the requirement that $(x(t), y(t)) \neq(x(s), y(s))$ if $t \neq s, a \leq t, s \leq b$.

The requirement of contimity is mot by requiring that $x(t)$ and $y(t)$ are continuous functions of t.

The sunsothreas requirement is met by requiring that $x(t)$ and $y(t)$ be differentiable, ie. $x^{\prime}(t)$ and $y^{\prime}(t)$ exist on $[a, b]$ (at the end point $t=a$ we want the right derivative to exist and $a t \quad t=b$, we want the left derivative to exist). We would also like our parametrization ts be such that the "velocity vector" at every point is von-zhn, lie., $\left(x^{\prime}(t), y^{\prime}(t)\right) \notin(0,0)$ fer any $a \leq t \leq b$.

A curve C with thess papacies is called a smooth arc (we will define trio term move formally neat time). But to summarize, C is a smooth are if:

- C cam be parameterize: $x=x(t), y=y(t), a \leq t \leq b$.
- $x(t)$ and $y(t)$ are differentiable on $[a, b]$ (at the end points $t=a$ and $t=b$, the derivatives are the appoperide one-sided derivatives.
- $\left(x^{\prime}(t), y^{\prime}(t)\right) \neq(0,0)$ for $a \leqslant t \leq b$
- If $t \neq s, a \leqslant t, s \leqslant b$, then $(x(t), y(t)) \neq(x(s), y(s))$.

A smooths closed curve C has all the propetives above, except we require $(x(a), y(a))=(x(b), y(b))$. This is the one exception to the last rule.
we proper wanting

$$
z(t)=x(t)+i y(t) . \quad a \in t \leq b
$$

for the are parameterifgation.

There is one move concept: that of a contour. Roughly a contra Γ is a
finite number of smooth aces or smooth loops r_{1}, \ldots, r_{n}, with the initial points of r_{i+1} being the end point of r_{i}. We also allow single points ts be contours in addition to the kind just disemiket.

Note that there is a direction that a moving point on a contour is tranesing.
NOTE the \int By a smooth curve we mean ether a smooth are or a smooth upgraded loop. Thus a contour is a sequence of smooth ares, the end point definition, lithe of one curve being the initial point of the neat curve.
more precise
than the
earlier me. So suppose C is a smooth curve, and say

$$
z(t)=x(t)+i y(t), \quad a \leq t \leq b
$$

is an admissible penemeterizutions of C (1.e. a ponameterization which follows all the requirements we put in).
write $z^{\prime}(t)$ for $x^{\prime}(t)+i y^{\prime}(t), a \leqslant t \leqslant b$.

$$
z^{\prime}(t):=x^{\prime}(t)+i y^{\prime}(t)
$$

Let f be a continuous function on a set which contains C.
Defrie

$$
\int_{c} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

It is easy to see that $\int_{C} f(z) d z$ dols not depend on the way it is ponamaeteriged.

If $\Gamma=r_{1}+\ldots+r_{n}$ is a contour with r_{i} smooth curves then defric

$$
\int_{\Gamma} f(z) d z=\sum_{i=1}^{n} \int_{\text {This has }}^{\int_{r_{i}} f(z) d z}
$$

This has been defined above.
We will do an example in the next page?

Example: Let C be the circle $|z|=2$ traversed once in the counter-clockwise direction. Compute

$$
\int_{c} z^{u} d z .
$$

Solution:
Parametrization:

$$
\begin{aligned}
& z(t)=2(\cos (t)+i \sin (t))=2 e^{i t}, \quad 0 \leqslant t \leq 2 \pi \\
& \int_{C} z^{u} d z=\int_{0}^{2 \pi}\left(2 e^{i t}\right)^{n}\left(2 i e^{i t}\right) d t \\
&=2^{n+1} i \int_{0}^{2 \pi} e^{i(n+1) t} d t .
\end{aligned}
$$

Case 1: $n=-1$. Then $e^{i(n+1) t}=1$ and $2^{n+1}=1$

$$
\int_{c} z^{n} d z=i \int_{0}^{2 \pi} d t=2 \pi i
$$

Case 2: $n \neq-1$. Then

$$
\begin{aligned}
\int_{C}^{z^{n}} d z & =2^{n+1} i \int_{0}^{2 \pi}\{\cos ((n+1) t)+i \sin ((n+1) t)\} d t \\
& =2^{n+1} i\left\{\int_{0}^{2 \pi} \cos ((n+1) t) d t+i \int_{0}^{2 \pi} \sin ((n+1) t) d t\right\}
\end{aligned}
$$

Now $\int_{0}^{2 \pi} \cos ((n+1) t) d t=\frac{1}{n+1}[\sin ((n+1) t)]_{0}^{2 \pi}$

$$
\begin{aligned}
& =\frac{1}{n+1}[\sin ((n+1)(2 \pi))-\sin (0)] \\
& =0
\end{aligned}
$$

similarly $\int_{0}^{2 \pi} \sin ((n+1) t) d t=-\left[\frac{\cos ((n+1) t)}{n+1}\right]_{0}^{2 \pi}=0$.
Thus

$$
\int_{c} z^{n} d z=\left\{\begin{array}{ll|l}
2 \pi i & \text { if } n=-1 & \text { If } n \neq-1, z^{n} \text { hos on } \\
\text { anti-derinative, namely } \frac{z^{n}}{n+1} . \text { We'll } \\
0 & \text { other wise. } & \text { see later that this is another } \\
\text { reason } \int_{c} z^{n} d z=0 \text { for } n \neq-1 .
\end{array}\right.
$$

