Fet 10, 2022

Polar Cancelry- Liemann equations If f=utiv is a function on an open set G in C with O&G, then writing f(r, 0), u(r, 0), r(r, 0) for $f(re^{i0})$, $u(re^{i0})$, v(reid) we can regard f, u, and v as functions of (r, 0). The polar Candy-Riemann equations for f (or for u and v) are $\frac{\partial r}{\partial r} = \frac{1}{7} \frac{\partial r}{\partial r} + \frac{\partial r}{\partial r}$ The usual Candy-Riemann equations, 1.2. Se = Sy, Sy = - Sr, are often called the restangular Carely-Rieman equations when we wish to distinguish it from the polar form of the equations. The two forms are equivalent as the following as the following result shows. Theorem: The function of satisfies the polar Camby-Riemann equations on Gr if and only if it satisfies the rationgular Cauchy - Riemonn equations on Gr. hon: Consider the motorise $A_{0} = \begin{pmatrix} \cos 0 & \sin 0 \\ -\sin 0 & \cos 0 \end{pmatrix} = represents notation by an angle <math>\Lambda - \theta$. Ro gives us rotation by an angle of -O. Let T= $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, represents rotation by - II Then T represents rotation by - 11/2 It that that A = A = A Tsince both side give rotation by $-(\pi/2 + \theta)$. Ao appears in the following calculation in multivariable calculus, when we compore cartesian (rectangular) coordinates with polor coordinates. Let h be a fruntion on G C C-EDy such that h has both partial derivatives. Now $\chi = \pi \cos \theta$, $y = \pi \sin \theta$. The chains rule in multivariable calculus gives The for = 3x the + dig the and the = dx the + dy the dr dr dr dr dy and du do dr do dr do dy

Thus
$$\frac{1}{20} = \cos 3 \frac{1}{20} + \sin 0 \frac{2}{20}$$
 and $\frac{2}{20} = -\pi \sin 0.9 \frac{2}{20} + \cos 0.9 \frac{1}{20}$.
This can be remarked in a
 $\left(\frac{1}{20}\right)^{\frac{1}{20}} = A_0\left(\frac{2}{20}\right)^{\frac{1}{20}}$ $\left(\frac{1}{20}\right)^{\frac{1}{20}}$ $\left(\frac{1}{20}\right)^{\frac{1}{20}}$ $\left(\frac{1}{20}\right)^{\frac{1}{20}} + \frac{1}{20}\right)^{\frac{1}{20}} = A_0\left(\frac{2}{20}\right)^{\frac{1}{20}}$ $\left(\frac{1}{20}\right)^{\frac{1}{20}} + \frac{1}{20}\right)^{\frac{1}{20}} = A_0\left(\frac{2}{20}\right)^{\frac{1}{20}}$ $\left(\frac{1}{20}\right)^{\frac{1}{20}} + \frac{1}{20}\right)^{\frac{1}{20}} + \frac{1}{20}\left(\frac{2}{20}\right)^{\frac{1}{20}} + \frac{1}{20}\left(\frac{1}{20}\right)^{\frac{1}{20}} + \frac{1}$

$$\begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = A_{\theta}^{-1} \begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{1}{x} \frac{\partial u}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial r} \\ \frac{1}{x} \frac{\partial u}{\partial \theta} \end{pmatrix}$$

Now improve
$$f = Log$$
, the principal logarithm, and
 $S = D = C - (-\infty, 0]$. Then, as we saw in the last class, if
 $f = u + iv$, then

$$u = \log n \quad \text{and} \quad v = 0$$

giving $u = \int_{\partial v} \frac{\partial u}{\partial r} = 1$
 $\int_{\partial v} \frac{\partial u}{\partial r} = 0$, $\frac{\partial v}{\partial r} = 1$
Thus \log satisfies the polar C-R eques, whence the
usual C-R eques. It follows that hoy is analytu.
Moreover since
 $(\partial u) = (\log R + i) 0$, (∂u)

$$\begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta \\ \sin \theta \\ \frac{\partial u}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial u}{\partial \pi} \\ \frac{1}{2} \frac{\partial u}{\partial \theta} \end{pmatrix}$$
we get

$$\begin{pmatrix} t \\ r^{t} \\ 0 \end{pmatrix} \begin{pmatrix} 0 \text{ inter } 0 \cos 0 \\ 0 \cos 0 & 0 \text{ inter } \end{pmatrix} = \begin{pmatrix} u & 0 \\ v & 0 \\ v & 0 \end{pmatrix}$$

$$\frac{\partial u}{\partial x} = \frac{1}{2} \cos \theta$$
, $\frac{\partial u}{\partial y} = \frac{1}{2} \sin \theta$.

$$Vrie d Log(z) = \partial u + i \partial v$$

 $dz = \partial v = \partial v$

Ξ

=

$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} \qquad (by \ C-R \ eques)$$

$$= \pm \cos \theta - \pm \sin \theta$$

$$\frac{1}{n} = \frac{1}{ne^{i\theta}}$$

he have there for proven:
There is g is an above on D=C (-0, 0] and

$$\frac{d}{de} \left(\log \left(e^{2} \right) \right) = \frac{1}{2}.$$
Example: "Find all solutions of $e^{2} = -1.$
Solution:
Let $e = 2 + ig$. The eqn $e^{ig} = -1$ translates to
 $e^{2}e^{ig} = -1.$
Thus $e^{ig} = [e^{2}e^{ig}] = [-1] = 1.$ lines $x \in \mathbb{R}$ the eqn $e^{ig} = 1$ has
only one solution, namely $x=0.$ Thus
 $a = xig.$
Use have to $x = e^{ig} = e^{i\pi}$
 $a = e^{ig}.$
Use have to $x = e^{ig} = e^{i\pi}$
 $a = e^{i(g+i)} = 1.$
 $f = e^{ig} = (1 - u) = 0.$
The only solutions on $e^{i\theta} = (1 - u) = 0.$
The only solutions of this $0 = 0.$
The only solutions of the one
 $a = 2\pi n$, $n \in \mathbb{T}.$
Ance $e^{i(g+i)} = (1, it)$ follows that
 $g = 2\pi n$, $n \in \mathbb{T}.$
Thus $g = (2n+i)\pi$, $n \in \mathbb{T}.$
Now $g = x + ig = 0 + ig = ig.$
Some the solution of the eqn $e^{ig} = -1$ are
 $x = (2n+i)i\pi, n \in \mathbb{T}.$
Other extince functions:
 $2h \propto ie$ real, it is even to see that
 $e^{i(g-i)} = \frac{1}{2} = \frac{1}{2i}$
Use entired this definition to C in the drivers are g.

$$cost := e^{it} + e^{-it}, \quad sint = e^{it} - e^{-it}, \quad z \in \mathbb{C}.$$

We can also extend the definition of hyperbolic cosine and sine from R to C We can also exerce , namely in the obvious manner, namely $\cosh(z) = \frac{e^2 + e^{-2}}{2}$, $\sinh(z) = \frac{e^2 - e^{-2}}{2}$ The hyperbolic cosine The hyperbolic sine

Theorem: The functions
$$\cos(z)$$
, $\sin(z)$, $\cosh(z)$, $\sinh(z)$ are entire. Moreoren
Itse following identities hold.
(a) $\cos(-z) = \cos(z)$, $\sin(-z) = -\sin(z)$, $z \in \mathbb{C}$
(b) $\cosh(-z) = \cosh(z)$, $\sinh(-z) = -\sinh(z)$, $z \in \mathbb{C}$
(c) $\cos^{2}(z) + \sin^{2}(z) = 1$, $z \in \mathbb{C}$
(d) $\cosh^{2}(z) - \sinh^{2}(z) = 1$, $z \in \mathbb{C}$
(e) $\cos(z_{1}, +z_{2}) = \cos(z_{1})\cos(z_{2}) - \sin(z_{1})\sin(z_{2})$, $z_{1}, z_{2} \in \mathbb{C}$
(f) $\sin(z_{1}-z_{2}) = \sin(z_{1})\cos(z_{2}) + \cos(z_{1})\sin(z_{2})$, $z_{1}, z_{2} \in \mathbb{C}$
(f) $\sin(z_{1}-z_{2}) = \sin(z_{1})\cos(z_{2}) + \cos(z_{1})\sin(z_{2})$, $z_{1}, z_{2} \in \mathbb{C}$

There are easy comprisations which are lift to yrn. We give two
examples of the computations:

$$\cos^{2} z + \sin^{2} z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^{2} + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^{2}$$

$$= \frac{(e^{iz} + e^{-iz})^{2}}{4} - \frac{(e^{iz} - e^{-iz})^{2}}{4} \quad (using the fact that i^{2} = -i)$$

$$= \frac{e^{2iz} + 2 + e^{-2iz} - (e^{2iz} - 2 + e^{-2iz})}{4}$$

$$= \frac{4}{4}$$

$$= 1.$$

Als

$$ash^{2}(z) - siuh^{2}(z) = (e^{2} + e^{-2})^{2} - (e^{3} - e^{-2})^{2} = e^{2z} + 2 + e^{-2z} - e^{-2z} = \frac{4}{4} = 1.$$
The remaining calculation are left for yer. 1/

Diffuentiation of these functions:
Theorem: (a)
$$\frac{d}{dz}$$
 cos(z) = -sin Z
(b) $\frac{d}{dz}$ sin(z) = cos z
(c) $\frac{d}{dz}$ sinh(z) = sinh(z)
(d) $\frac{d}{dz}$ sinh(z) = cosh(z)
Prof.:

All the arentions follows from
$$\frac{d}{dt}e^2=e^2$$
 and the chain rule. The debails are left to you.

Other trig functions:

$$kec(e) := \frac{1}{605 2}$$

$$before d where $cos(e) \neq 0$

$$tom(e) := \frac{m(e)}{cos(e)}$$

$$cosec(e) := \frac{1}{m(e)}$$

$$cosec(e) := \frac{1}{m(e)}$$

$$before d where $sin(e) \neq 0$.$$$$