Polar Canchy-Riemam equators
If $f=u+i r$ is a function on an open set G in \mathbb{C} with $0 \notin G$, then writing $f(r, \theta), u(r, \theta), v(r, \theta)$ for $f\left(r e^{i \theta}\right), u\left(r e^{i \theta}\right)$, $v\left(r e^{i \theta}\right)$, we cam regent f, u, and v as functions of (r, θ). The polar Canny - Riemoun equations for f cor fer u and v) are

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta} \text {. }
$$

The usual Connliy-Riemam equation, $1 . e . \frac{\partial u}{\partial x}=\frac{\partial r}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial r}{\partial x}$, are often called the rectangular Cauchy-Riemam equations when we wish to distinguish it from the polar form of the equations. The tor forms are equivalent as the following as the following remit shows.

Theorem: The function f satisfies the poler Canuly-Riemam equations on G if and only if it satisfies the ratangular Canchy-Riemonn equations on G.
Port:
Consider the matrix

$$
A_{\theta}=\left(\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \longleftarrow \text { nepreante rotation by an angl } \eta-\theta \text {. }
$$

R_{0} gives na rotation by an angle of $-\theta$. Let

$$
T=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { represents notation by }-\frac{\pi}{2}
$$

Then T represents rotation by $-\pi / 2$.
It follows that

$$
\begin{equation*}
T A_{\theta}=A_{\theta} T \tag{A}
\end{equation*}
$$

since both sides give rotation by $-(\pi / 2+\theta)$.
AO appears in the following calculation in multivariathe calculus, when we compare cartesian (rectangular) coordinates rite poler coordinates. Let h be a function on $G \subset \subset-\{0\}$ sulk that h has both partial derivatives.

Now $x=r \cos \theta, y=r \sin \theta$.
The chains rule in multivaniable calculus gives

$$
\partial h / \partial r=\frac{\partial x}{\partial r} \frac{\partial h}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial h}{\partial y} \text { and } \frac{\partial h}{\partial \theta}=\frac{\partial x}{\partial \theta} \frac{\partial h}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial h}{\partial y} \text {. }
$$

Thus $\frac{\partial h}{\partial r}=\cos \theta \frac{\partial h}{\partial x}+\sin \theta \frac{\partial h}{\partial y}$ ant $\frac{\partial h}{\partial \theta}=-r \sin \theta \frac{\partial h}{\partial x}+\cos \theta \frac{\partial h}{\partial y}$.
This can be rewritten as

$$
\binom{\frac{\partial h}{\partial r}}{\frac{1}{r} \frac{\partial h}{\partial \theta}}=A_{\theta}\binom{\frac{\partial h}{\partial x}}{\frac{\partial h}{\partial y}}
$$

Multiply both sides by T and we the formula $T A_{\theta}=A_{\theta} T$ to get $T\binom{\partial \ln / h_{n}}{j_{n} \partial h / \partial \theta}=A_{\theta} T\binom{\partial h / \partial x}{\partial u / \partial y}$. Since $T\binom{a}{b}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\binom{a}{b}=\binom{b}{-a}$, this gives

$$
\begin{equation*}
\binom{\frac{1}{r} \frac{\partial h}{\partial \theta}}{-\frac{\partial h}{\partial r}}=A_{\theta}\binom{\partial h / \partial y}{-\partial h / \partial x} \tag{2}
\end{equation*}
$$

apply (1) ts $h=u$ and (2) to $h=v$ to get

$$
\begin{equation*}
\binom{\frac{\partial u}{\partial r}}{\frac{1}{r} \frac{\partial u}{\partial \theta}}=A_{\theta}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}} \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{\frac{1}{r} \frac{\partial v}{\partial \theta}}{-\frac{\partial v}{\partial r}}=A_{v}\binom{\frac{\partial v}{\partial y}}{-\frac{\partial v}{\partial x}} \tag{B}
\end{equation*}
$$

(A) and (B) we see that

$$
\begin{array}{r}
\binom{\frac{\partial u}{\partial r}}{\frac{1}{r} \frac{\partial u}{\partial \theta}}=\binom{\frac{1}{r} \frac{\partial r}{\partial \theta}}{-\frac{\partial r}{\partial r}} \text { if and only if } A_{\theta}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=A_{\theta}\binom{\frac{\partial v}{\partial y}}{-\frac{\partial v}{\partial x}} \\
\text { if and only if }\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\binom{\frac{\partial v}{\partial y}}{-\frac{\partial v}{\partial x}} . \\
\text { since } A_{\theta} \text { ir inventable } \\
\text { (note dit } \left.A_{\theta}=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0\right)
\end{array}
$$

In other words
Polar $C-R$ hold for $f=u+i r$ if and only of rectangular $C-R$ hold for $f=u+i v$.
Remark: There is a simpler geometric reason why A_{θ} is invertible. Since it gives rotation by $-\theta$ radians, it has an nivere, nauncly rotation by $+\theta$ radians, lie $A_{\theta}^{-1}=A-\theta$, i.e.,

$$
A_{\theta}^{-1}=\left(\begin{array}{lr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad(\text { for } \cos (-\theta)=\cos (\theta) \& \sin (-\theta)=-\sin \theta) .
$$

It follows from our calculations earlier that

$$
\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=A_{\theta}^{-1}\binom{\frac{\partial u}{\partial r}}{\frac{1}{r} \frac{\partial u}{\partial \theta}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\frac{\partial u}{\partial r}}{\frac{1}{r} \frac{\partial u}{\partial \theta}}
$$

Now suppose $f=\log$, the principal logarithm, and $G=D=\mathbb{C}-(-\infty, 0]$. Then, as we san in the last class, if $f=u+i v$, then

$$
u=\log r \quad \text { and } \quad v=\theta
$$

giving we $\begin{cases}\frac{\partial u}{\partial r}=\frac{1}{r}, & \frac{\partial v}{\partial r}=0 \\ \frac{\partial u}{\partial \theta}=0, & \frac{\partial v}{\partial \theta}=1\end{cases}$
Thus Log satisfies the polar $C-R$ equs, whence the usual $C-R$ equs. It follows that \log is analytu.

Morvover since

$$
\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\left(\begin{array}{lr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\frac{\partial u}{\partial r}}{\frac{1}{r} \frac{\partial u}{\partial \theta}}
$$

we get

$$
\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{\frac{1}{r}}{0}
$$

whence

$$
\frac{\partial u}{\partial x}=\frac{1}{r} \cos \theta, \frac{\partial u}{\partial y}=\frac{1}{r} \sin \theta \text {. }
$$

Now $\frac{d}{d z} \log (z)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$

$$
\begin{aligned}
& =\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y} \quad \text { by } c-R \text { eggus) } \\
& =\frac{1}{r} \cos \theta-\frac{1}{r} \sin \theta \\
& =\frac{1}{r} e^{-i \theta} \\
& =\frac{1}{r e^{i \theta}} \\
& =\frac{1}{z} .
\end{aligned}
$$

We have then fire proven:
Theven: \log is analytic on $D=\mathbb{C},(-\infty, 0]$ and

$$
\frac{d}{d z}(\log (z))=\frac{1}{z}
$$

Example: Find all solutions of $e^{z}=-1$.
Solution:
Let $z=x+i y$. The equ $e^{z}=-1$ translates ts

$$
e^{x} e^{i y}=-1
$$

Thus $e^{x}=\left|e^{x} e^{i y}\right|=|-1|=1$. Since $x \in \mathbb{R}$ the equ $e^{x}=1$ has only one solution, namely $x=0$. Thus

$$
z=i y .
$$

We have to solve

$$
e^{i y}=-1 \quad \text { where } y \in \mathbb{R}
$$

So

$$
\begin{aligned}
& e^{i y}=e^{i \pi} \\
\Rightarrow \quad & e^{i(y-\pi)}=1 .
\end{aligned}
$$

I $\theta \in \mathbb{R}$ and $e^{i \theta}=1$, then $\cos \theta+i \sin \theta=1$, which means:

$$
\cos \theta=1 \text { and } \sin \theta=0 \text {. }
$$

The only solutions of this are

$$
\theta=2 \pi n, \quad n \in \mathbb{Z} .
$$

Since $e^{i(y-\pi)}=1$, it follows that

$$
y-\pi=2 \pi n, \quad n \in \mathbb{Z}
$$

Thus $\quad y=(2 n+1) \pi, n \in \mathbb{Z}$.
Now $z=x+i y=0+i y=i y$.
Heme the solution of the equ $e^{z}=-1$ are

$$
z=(2 n+1) i \pi, \quad n \in \mathbb{Z}
$$

odd multiples of $i \pi$.
Other Entire functions:
If x is real, it is easy to see that

$$
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \text { and } \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

We extend this definition to \mathbb{C} in the obvious way.

$$
\cos z:=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z:=\frac{e^{i z}-e^{-i z}}{2 i}, \quad z \in \mathbb{C}
$$

We can also extend the define intion of hyperbolic cosine and sine from \mathbb{R} is \mathbb{C} in the obvious manner, namely

$$
\cosh (z)=\frac{e^{z}+e^{-z}}{2}, \quad \sinh (z)=\frac{e^{z}-e^{-z}}{2}
$$

The hyperbolic cosine
The hyperbolic sine

Since e^{z} is an entire function, it is clear that $\cos (z)$, $\sin (z), \cosh (z)$ and $\sinh (z)$ are entire.

Theorem: The fractions $\cos (z), \sin (z), \cosh (z), \sinh (z)$ are entire. More over the following identities hold.
(a) $\cos (-z)=\cos (z), \quad \sin (-z)=-\sin (z), \quad z \in \mathbb{C}$
(b) $\cosh (-z)=\cosh (z), \quad \sinh (-z)=-\sinh (z), z \in \mathbb{C}$
(c) $\cos ^{2}(z)+\sin ^{2}(z)=1, \quad z \in \mathbb{C}$
(d) $\cosh ^{2}(z)-\sinh ^{2}(z)=1, \quad z \in \mathbb{C}$
(e) $\quad \cos \left(z_{1}+z_{2}\right)=\cos \left(z_{1}\right) \cos \left(z_{2}\right)-\sin \left(z_{1}\right) \sin \left(z_{2}\right), z_{1}, z_{2} \in \mathbb{C}$
(f) $\sin \left(z_{1}+z_{2}\right)=\sin \left(z_{1}\right) \cos \left(z_{2}\right)+\cos \left(z_{1}\right) \sin \left(z_{2}\right), \quad z_{1}, z_{2} \in \mathbb{C}$

Pro fo:
There are easy computations which are left to you. We give two examples of the computations:

$$
\begin{aligned}
\cos ^{2} z+\sin ^{2} z & =\left(\frac{e^{i z}+e^{-i z}}{2}\right)^{2}+\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)^{2} \\
& \left.=\frac{\left(e^{i z}+e^{-i z}\right)^{2}}{4}-\frac{\left(e^{i z}-e^{-i z}\right)^{2}}{4} \quad \text { (using the fart that } i^{2}=-1\right) \\
& =\frac{e^{2 i z}+2+e^{-2 i z}-\left(e^{2 i t}-2+e^{-2 i z}\right)}{4} \\
& =\frac{4}{4} \\
& =1 .
\end{aligned}
$$

tho

$$
\cosh ^{2}(z)-\sinh ^{2}(z)=\frac{\left(e^{z}+e^{-z}\right)^{2}-\left(e^{z}-e^{-z}\right)^{2}}{4}=\frac{e^{2 z^{\prime}}+2+e^{-2 z}-e^{2 z}+2-e^{-2 z}}{4}=\frac{4}{4}=1
$$

The remaining calculation are left for you.

Differentiation of these functions:
Theorem: (a) $\frac{d}{d z} \cos (z)=-\sin z$
(b) $\frac{d}{d z} \sin (z)=\cos z$
(c) $\frac{d}{d z} \cosh (z)=\sinh (z)$
(d) $\frac{d}{d t} \sinh (z)=\cosh (z)$

Prod :
All the assutions follow from $\frac{d}{d z} e^{z}=e^{z}$ and the chain rule. The details are left to yon.

Other trig functions:

$$
\left.\begin{array}{l}
\sec (z):=\frac{1}{\cos z} \\
\tan (z):=\frac{\sin (z)}{\cos (z)}
\end{array}\right\} \quad \text { Defined where } \cos (z) \neq 0
$$

