The agelva of complex numbers:

Negative numbers $\longleftrightarrow x+1=0 \quad(x=-1)$
Rational numbers $\longleftrightarrow 2 x+3=0 \quad(x=-3 / 2)$
Irrational numbers $\longleftrightarrow x^{2}-2=0 \quad(x= \pm \sqrt{2})$

Couples numbers also arise via this process.
consider the equ

$$
\begin{aligned}
& x^{2}+1=0 \quad \text { (Just as we did }-1 \text {, } \\
& \text { on } A \text { the above } \lambda \text {. Call it } i \text {. }
\end{aligned}
$$

$$
i^{2}=-1
$$

Solus of $x^{2}+1=0$ are $\pm i$.

$$
i=\sqrt{-1}
$$

Notations:

$$
\mathbb{R}=\text { set of real numbers. }
$$

The sit A couples numbers, denoted \mathbb{C}, is the set

$$
\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}
$$

- $a+i b=c+i d, a, b, c, d \in \mathbb{R}$ if and only if $a=c$ and $b=d$.
- Real numbers can be regarded as elements
of \mathbb{B}. For example, if $a \in \mathbb{R}$, then we regard a as the complex number $R+i .0$ In this sere $\mathbb{R} \subset \mathbb{C}$.
- $a+i b=0$ if and only if $a=0$ and $b=0$.
- By $a-i b, a, b \in \mathbb{R}$, we mean the complex number $a+i(-b)$.
- If $c \in R, c \neq 0$, then $\frac{a+i b}{c}:=\frac{a}{c}+i \frac{b}{c}$, $a, d \in \mathbb{R}$.
If $a+i b \neq 0$ then either a or b is non-zw. In panticinlar $a^{2}+b^{2} \neq 0$.

Dithenctir operations on couples numbers: $a, b, c, d \in \mathbb{R}$.

1. $(a+i b)+(c+i d)=a+c+i(b+d)$
2. $(a+i b)(c+i d)=a(c+i d)+i b(c+i d)$

$$
\begin{aligned}
& =a c+i a d+i b c+i^{2} b d \\
& =a c+i(a d+b c)-b d \\
& =(a c-b d)+i(a d+b c)
\end{aligned}
$$

Consequence:

$$
\begin{aligned}
(c+i d)(c-i d) & =c^{2}+d^{2}+i(-c d+c d) \\
& =c^{2}+d^{2} .
\end{aligned}
$$

$$
(c+i d)(c-i d)=c^{2}+d^{2}
$$

In particular, if $c+i d \neq 0$ then

$$
(c+i d)(c-i d)=c^{2}+d^{2} \neq 0
$$

3. Division: Suppose $a, b, c, d \in \mathbb{R}$ and suppose $c+i d \neq 0$. We'd take to dinge $a+i b$ by $c+i d$.

$$
\begin{aligned}
\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{(c+i d)(c-i d)} & =\frac{(a c+b d)+i(b c-a d)}{c^{2}+d^{2}} \\
= & \frac{a c+b d}{c^{2}+d^{2}}+i \frac{b c-a d}{c^{2}+d^{2}}
\end{aligned}
$$

The Real and Innagivary parts of a complex number:
Let $z=a+i b \in \mathbb{C}, \quad a, b \in \mathbb{R}$.

$$
\operatorname{Re}(z)=a=\text { the "real" pant of } z
$$

In $(z)=b$ = the "imaginary" part $f z$.

Examples:

1. Let $z_{1}=3+i, \quad z_{2}=2-4 i$

$$
\begin{aligned}
z_{1}+z_{2} & =(3+2)+(1-4) i=5-3 i \\
z_{1} z_{2} & =(3+i)(2-4 i) \\
& =(6-(-4))+i(2-12) \\
& =10-10 i \\
\frac{z_{1}}{z_{2}} & =\frac{3+i}{2-4 i}=\frac{3+i}{2-4 i} \cdot \frac{2+4 i}{2+4 i}=\frac{(3+i)(2+4 i)}{2^{2}+4^{2}}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{3(2+4 i)+i(2+4 i)}{20} & =\frac{6+12 i+2 i-4}{20} \\
& =\frac{2+14 i}{20} \\
& =\frac{1+7 i}{10} \\
& =\frac{1}{10}+\frac{7}{10} i
\end{aligned}
$$

2. Compute i^{2023}.

Son:

$$
\begin{aligned}
& i, i^{2}, i^{3}, i^{4}, i^{5}, i^{6}, i^{7}, i^{8}, \ldots \\
& i,-11,-i, 11, ~ \\
& 11,
\end{aligned}
$$

Note

$$
2023=4(505)+3
$$

So

$$
\begin{aligned}
i^{2023}=i^{4(505)+3} & =\left(i^{4}\right)^{505} \cdot i^{3} \\
& =1^{505} \cdot(-i) \\
& =-i
\end{aligned}
$$

Definition: Let $z=a+i b \in \mathbb{C},(a, b \in \mathbb{R})$. The complex conjingnte $\delta] z$ is the number $a-i b$. This is denoted \bar{z}.

$$
\begin{aligned}
\bar{z} & =a-i b \quad \\
\text { Note } & z \cdot \bar{z}
\end{aligned}=a^{2}+b^{2} . \quad(i y z=a+i b, a, b \in \mathbb{R})
$$

Point representations of complex numbers (Due to ARGAND)
Let $z \in \mathbb{C}, \quad \operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b$.

Ahlistow and subtraction - as in 2-D vectors.

Vector representation of addition.

Definition (Modulus or absolute value): Let $z \in \mathbb{C}, \operatorname{Re}(z)=a$, $\operatorname{Im}(z)=b, \quad(z=a+i b)$. The modulus (N abs. value) of z is:

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

lo

- $|z|$ is the distance of the point representation If z form the origin.
- The length r if the "vator" z

Examples:

1. Describe the set f points z in the complex plane such that $|z|=3$.

Ans:
The cire of radius 3 centred at 0 .
2. Some as above but witt $|z| \leq 3$.
 Ans: The cloche $A=$ of radius 3 centred at 0 .
3. Descents the set of complex mabuse in the complex plane such that

$$
|z-1+2 i|=|z+3-i|
$$

Solution:
Let $z=a+i b, \quad a, b \in \mathbb{R}$.

$$
|a+i b-1+2 i|=|a+i b+3-i|
$$

$$
\begin{aligned}
& \text { lie. } \quad|(a-1)+i(b+2)|=|(a+3)+i(b-1)| \\
& \text { So } \\
& \quad(a-1)^{2}+(b+2)^{2}=(a+3)^{2}+(b-1)^{2} \\
& a^{2}-2 a+1+b^{2}+4 b+4=a^{2}+6 a+9+b^{2}-2 b+1 \\
& -2 a+4 b+5=6 a-2 b+10 \\
& \quad 8 a-6 b=-5 .
\end{aligned}
$$

