Lerture 1

The algebra of complex members: $\rightarrow xt = 0$ (x = -1) Negative numbers c $\longleftrightarrow \qquad 2nt^3 = 0 \quad (n = -\frac{3}{2})$ Rational numbers Swational numbers \iff $\chi^2 - 2 = 0$ $(\chi = \pm \sqrt{2})$ Comples numbers also arrie via this process. Consider the equ

$$\chi^{2} + 1 = 0$$
 (Just as we did -1, $\sqrt{2}$...)
Sutisduce a solution A the above f . Call it \tilde{v} .
 $i^{2} = -1$
Solution f $\pi^{2} + 1 = 0$ are $\pm \tilde{v}$.
 $i = \sqrt{-1}$.

Notations:

$$R = set 5] real monthes.$$
The set of complex mumbers, denoted C, is the set
$$C = \{a + ib \mid a, b \in \mathbb{R}\}$$
• $a + ib = c + id$, $a, b, c, d \in \mathbb{R}$ if and only if
$$a = c \text{ and } b = d.$$
• Real mutures can be regarded as elements

5) B. For example, if
$$A \in \mathbb{R}$$
, then
we regard a as the complex number $R \neq i \cdot 0$
So this same $\mathbb{R} \subset \mathbb{C}$.
• $a+ib=0$ if and only if $a=0$ and $b=0$
• $B_y = a-ib$, $a, b \in \mathbb{R}$, we mean the complex
mumber $a+i(-b)$.
• $S_{b} \subset C \in \mathbb{R}$, $C \neq 0$, then $a+ib := a+ib$,
 $a, b \in \mathbb{R}$.
• $S_{b} \subset C \in \mathbb{R}$, $C \neq 0$, then $a \neq ib := a + ib$,
 $a, b \in \mathbb{R}$.
• $S_{b} \subset C \in \mathbb{R}$.

Arithmetic quations on complex numbers:
$$a_{3}b_{3}c_{3}d \in \mathbb{R}$$
.
1. $(a+ib) + (c+id) = a+c + i (b+d)$
2. $(a+ib)(c+id) = a(c+id) + ib(c+id)$
 $= ac + iad + ibc + i^{2}bd$
 $= ac + i(ad+bc) - bd$
 $= (ac - bd) + i(ad+bc)$
Consequence: $(c+id)(c-id) = c^{2}+d^{2}+i(-cd+cd)$
 $=c^{2}+d^{2}$.

In putticular, if
$$c+id \neq 0$$
 liter
 $(c+id) cc-id) = c^2 + d^2 \neq 0$
3. Division: Suppose $a, b, c, d \in \mathbb{R}$ and suppose
 $c+id \neq 0$. We'd tike to divide $a+ib$ by $c+id$.
 $\underline{a+ib} = (\underline{a+ib})(\underline{c-id}) = (\underline{ac+bd}) + i(\underline{bc-ad})$
 $c+id$ $(c+id) cc-id)$ $= (\underline{ac+bd}) + i(\underline{bc-ad})$
 $c+id$ $(c+id) cc-id)$ c^2+d^2

Examples:
1. Let
$$z_1 = 3+i$$
, $z_2 = 2-4i$
 $z_1+z_2 = (3+2) + (1-4)i = 5-3i$.
 $z_1 z_2 = (3+i)(2-4i)$
 $= (6-(-4)) + i(2-12)$
 $= 10 - 10i$
 $\frac{z_1}{z_2} = \frac{3+i}{2-4i} = \frac{3+i}{2-4i} \cdot \frac{2+4i}{2+4i} = \frac{(3+i)(2+4i)}{2^2+4^2}$

= 3(2+4i) + i(2+4ii) = 6+12i + 2i - 4
20 20
= 2 + 14i
20
= 1 + 7i
10
$= \frac{1}{10} + \frac{7}{10} \dot{a}$
2. Compute i 2023
$-\frac{\text{Solut:}}{1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 4, 5, 1, 7, 1, 8, \dots}$
Note
2023 = 4(505) + 3
ملاً
$\frac{2023}{1} = \frac{4(505)+3}{1} = (\frac{14}{1})^{505} \cdot \frac{3}{1}$
$= 1^{505} \cdot (-i)$
= -ù
Definition: Let Z= a+ib E C, (a, b E R). The complex
<u>Conjugate of 2</u> is the number a-ib. This is denoted 2.
Z-a-ib (yz=a+ib, aber)
Note $2.\overline{2} = a^2 + b^2$

Examples:
1. Describe the set of points 2 in the omples plane
and that 121=3.

2. Some as above but with 121 = 3.

2. Some as above but with 121 = 3.

2. Some as above but with 121 = 3.

3. Describe the set of comples numbers in the complex
plane such that

$$|z - 1 + 2i| = |z + 3 - i|$$

Let $z = a + ib, a, b \in \mathbb{R}$.
 $|a + ib - 1 + 2i| = |a + ib + 3 - i|$

i = (a-1) + i(b+2) = (a+3) + i(b-1)S $(a-1)^{2} + (b+2)^{2} = (a+3)^{2} + (b-1)^{2}$ $a^2 - 2a + 1 + b^2 + 4b + 4 = a^2 + 6a + 9 + b^2 - 2b + 1$ -2a + 4b + 5 = 6a - 2b + 108a - 6b = -5(-3,1) ·· (1-2)