Name:

QUIZ 1

Recall the Cauchy estimates

$$
\left|f^{(n)}(a)\right| \leq n!\frac{M}{R^{n}} \quad(n=1,2,3, \ldots)
$$

for an analytic function on the closed $\operatorname{disc} \bar{B}(a, R)$ where M is an upper bound for $|f(\zeta)|$ on the circle C_{R} of radius R around a.

A function is said to be entire if it is defined and analytic on the entire complex plane.
(1) Show using the Cauchy estimates that a bounded entire function is necessarily constant. (This is called Louisville's theorem)

Solution. Let f be an entire function which is bounded. Let $M<\infty$ be an upper bound for $|f|$ on \mathbf{C}. Let $a \in C$. Since f is analytic on $\bar{B}(a, R)$ for every $R>0$, for each $R>0$ the Cauchy estimates give

$$
\left|f^{\prime}(a)\right| \leq \frac{M}{R}
$$

Letting $R \longrightarrow \infty$ we see that $f^{\prime}(a)=0$. Since a is arbitrary, f is a constant.
There is a slightly different way of doing the same problem. By Cauchy estimates for f on $\bar{B}(a, R)$ we get for $n \geq 0$

$$
\left|f^{(n)}(0)\right| \leq n!\frac{M}{R^{n}}
$$

For $n \geq 1$, if we let $R \longrightarrow \infty$, the right side tends to zero. It follows that

$$
f^{(n)}(0)=0 \quad(n \geq 1)
$$

Using the power series expansion of f around 0 we get (z) is a constant.
(2) Let a be a point of a region Ω and f an analytic function on $\Omega \backslash\{a\}$ such that $(z-a) f(z) \rightarrow 0$ as $z \rightarrow a$. Show that f can be extended to an analytic function on Ω. (This is called Riemann's removable singularities theorem). [Hint: Use a homework problem you did involving an integral formula.]
Solution. Let $B=B(b, r)$ be an open ball in Ω such that $a \in B$ and the closed ball \bar{B} is contained in Ω. Let C be the boundary circle of \bar{B}. Then from Problem 5 from HW 1, or from Theorem 1.1 from Lecture 2, we see that

$$
g(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta) d \zeta}{\zeta-z}
$$

is an analytic function on B. On the other hand, by Cauchy's theorem we have

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta) d \zeta}{\zeta-z} \quad(z \in B \backslash\{a\})
$$

since for fixed $z \in B \backslash\{a\}$, the function $h: B \backslash\{z, a\} \rightarrow \mathbf{C}$ defined by the formula

$$
h(w)=\frac{f(w)-f(z)}{w-z} \quad(w \in B \backslash\{z, a\})
$$

is analytic and $\lim _{w \rightarrow w_{0}}\left(w-w_{o}\right) h(w) \longrightarrow 0$ for $w_{0} \in\{a, z\}$. It follows that g extends f on B. This means f can be extended to an analytic function on Ω.

