Name: —

QUIZ 1 (MAKE UP)

Recall Riemann's removable singularities theorem which was given as a problem in the original quiz (for which this is a make up). It states that if Ω is a region, $a \in \Omega$ a point, and f an analytic function on $\Omega \setminus \{a\}$ such that $\lim_{z\to a} (z-a)f(z) = 0$, then f can be extended to an analytic function on all of Ω .

- (1) Suppose f(z) is analytic on $U = B(0, r) \setminus \{0\}$ and $\lim_{n\to\infty} z^n f(z) \neq 0$ for any $n \geq 1$ (for each $n \geq 0$ this means that either the limit does not exist, or if it does, it is not zero). Show that f(U) is dense in **C**. [Hint: Assume f(U) is not dense, i.e., its complement in **C** contains an open set. Derive a contradiction.] (This is knows as the Weierstrass-Casorati Theorem.)
- (2) Suppose f(z) is analytic on a region Ω and |f(z)| has a maximum at $a \in \mathbb{C}$. Show that f(z) is a constant using the Inverse Function Theorem from Several Variables Calculus. [Hint: You may need a fact proven in class today regarding the function |f| on Ω . You may also need Riemman's removable singularities theorem.]