SOLUTIONS TO SELECTED PROBLEMS

Problem 2, HW 5. We have to show that if $\varphi \colon \Omega \times I \to \mathbf{C}$ is a continuous function where $I = [\alpha, \beta]$ is a closed interval in \mathbf{R} and Ω is a region in \mathbf{C} , and if for each fixed $t \in I$, the function $z \mapsto \varphi(z, t)$ is holomorphic on Ω then

$$F(z)\!:=\int_{\alpha}^{\beta}\varphi(z,t)dt$$

is a holomorphic on Ω and $F'(z) = \int_{\alpha}^{\beta} (\partial \varphi(z,t)/\partial z) dt$. Fix $t \in I$. Let D be an open disc in Ω such that the closed disc \overline{D} lies in Ω and let C be the bounding circle for these discs. By Cauchy's integral formula and by the hypotheses, we have

$$\varphi(z,t) = \frac{1}{2\pi i} \int_C \frac{\varphi(\zeta,t)}{\zeta-z} d\zeta \quad (z \in D).$$

Therefore for $z \in D$ we have

$$F(z) = \frac{1}{2\pi i} \int_{I} \int_{C} \frac{\varphi(\zeta, t)}{\zeta - z} d\zeta dt$$

Now $K = C \times I$ is compact and hence φ is bounded on K. Let this bound be M. Next, if $z \in D$, then the distance between z and C is positive, say it is ρ . Then $|\zeta - z| > \rho$ for all $\zeta \in C$. Thus for this fixed z we have

$$\left|\frac{\varphi(z,t)}{\zeta-z}\right| \le \frac{M}{\rho} \quad \text{on } K.$$

Fubini's theorem applies and therefore have

$$F(z) = \int_C \left(\frac{1}{2\pi i} \int_{\alpha}^{\beta} \varphi(\zeta, t) dt\right) \frac{d\zeta}{\zeta - z}$$
$$= \frac{1}{2\pi i} \int_C \frac{F(\zeta)}{\zeta - z} d\zeta$$

Now $F(\zeta)$ is clearly continuous as a function of the variable ζ on C. Indeed, since K is compact, φ is uniformly continuous on K, and hence given $\epsilon > 0$ we can find $\delta > 0$ such that $|\varphi(\zeta_1, t_1) - \varphi(\zeta_2, t_2)| < \epsilon$ whenever the distance between (ζ_1, t_1) and (ζ_2, t_2) is less than δ in $K \subset \mathbf{C} \times \mathbf{R} \subset \mathbf{R}^3$. In particular, if $|\zeta_1 - \zeta_2| < \delta$ then $|\varphi(\zeta_1, t) - \varphi(\zeta_2, t)| < \epsilon$ for all $t \in I$. It is then easy to see that $|F(\zeta_1) - F(\zeta_2)| < \epsilon(\beta - \alpha)$, giving the required continuity. In particular F is measurable (this can be seen by other methods too). By Theorem 1.1 of Lecture 2, or by problem 5 of HW 1, we see that F(z) is holomorphic in D. It follows that F(z) is holomorphic on Ω . Again by either Theorem1.1 of Lecture 2, or by problem 5 of HW 1, we have

$$F'(z) = \int_C \left(\frac{1}{2\pi i} \int_{\alpha}^{\beta} \varphi(\zeta, t) dt\right) \frac{d\zeta}{(\zeta - z)^2}.$$

Apply Fubini again (same argument holds, but now the bound for the integrand is M/ρ^2) and conclude that

$$F'(z) = \int_{\alpha}^{\beta} \left(\frac{1}{2\pi i} \int_{C} \frac{\varphi(\zeta, t)}{(\zeta - z)^2} d\zeta \right) dt$$
$$= \int_{\alpha}^{\beta} \frac{\partial}{\partial z} \varphi(z, t) dt$$

where yet once again we are using problem 5 from HW1 etc.

Problem 6, HW 6. Note that since $f'(a) \neq 0$ the order of the zero of f at a is 1. From the hypothesis that a is the only solution of f(z) = 0 in \overline{D} it follows that f(z) = (z - a)h(z) with h holomorphic and nowhere vanishing on \overline{D} . In particular on \overline{D} we have

$$\frac{f'(z)}{f(z)} = \frac{1}{z-a} + \frac{h'(z)}{h(z)}$$

and

$$\frac{zf'(z)}{f(z)} = \frac{z}{z-a} + z\frac{h'(z)}{h(z)}.$$

Since h(z) is nowhere vanishing on \overline{D} , the functions h'(z)/g(z) and zh'(z)/g(z) are holomorphic there whence their integrals over C vanish. We then have the following sequence of equalities: $(1/2\pi i) \int_C zf'(z)/f(z)dz = (1/2\pi i) \int_C z/(z-a)dz = a$. (The last equality can be deduced, for example, from Cauchy's integral formula.) This proves part (a).

Next let $\Gamma = f(C)$. Let W be the connected component of $\mathbf{C} \smallsetminus \Gamma^*$ which contains 0 (recall f is never zero on C by our hypotheses). We have seen that

$$\eta(\Gamma, 0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw^*}{w^*} = \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{C} \frac{1}{z-a} dz = 1.$$

Hence $\eta(\Gamma, w) = 1$ for all $w \in W$. This means $(1/2\pi i) \int_C f'(\zeta)/(f(\zeta) - w)d\zeta = 1$ for all $w \in W$, i.e., that f(z) - w has only one zero, call it g(w), in \overline{D} , for every $w \in W$. Thus f(z) - w = (z - g(w))r(z) on \overline{D} , where r(z) is holomorphic and nowhere vanishing on \overline{D} . As before (noting that r'(z)/r(z) and zr'(z)/r(z) are holomorphic on \overline{D} and hence have vanishing integrals over C), we conclude that

$$g(w) = (1/2\pi i) \int_C \zeta \frac{f'(\zeta)}{f(\zeta) - w} d\zeta.$$

Since z = g(w) is the only solution of f(z) - w = 0 in \overline{D} , it follows that f(g(w)) = w. Similarly if $\zeta \in g(W)$, then we have $w = f(\zeta) \in W$, whence the equation

$$f(z) - w = 0$$

has only one solution in \overline{D} . Since $z = \zeta$ and z = g(w) are both solutions in \overline{D} of the above equation, it follows that $g(w) = \zeta$, i.e. $g(f(\zeta)) = \zeta$. This finishes part (b).

Now for part (c). Let $t \mapsto \zeta(t)$, $0 \le t \le 2\pi$ be the usual parametirisation on C (i.e., $\zeta(t) = a + re^{it}$ for $0 \le t \le 2\pi$). Then setting

$$\varphi(w,t) = \frac{1}{2\pi i} \zeta(t) \frac{f'(\zeta(t))}{f(\zeta(t)) - w} \zeta'(t)$$

and using Problem 2 of HW 5 (see solution above), we conclude that g(w) is holomorphic on W.