SOLUTIONS TO SELECTED PROBLEMS

Problem 2, HW 5. We have to show that if ¢: 2 x I — C is a continuous
function where I = [a, 5] is a closed interval in R and 2 is a region in C, and if for
each fixed t € I, the function z — ¢(z,t) is holomorphic on € then

B
F(z2):= / o(z,t)dt

is a holomorphic on © and F'(z fB (0p(z,1)/0z)dt. Fixt € I. Let D be an open

disc in €2 such that the closed dlSC D lies in © and let C be the bounding circle for
these discs. By Cauchy’s integral formula and by the hypotheses, we have

o(z,t) = ﬁ/ (S8 d¢ (z € D).

c C—=z

27m//c C— &) gear

Now K = C x I is compact and hence ¢ is bounded on K. Let this bound be M.
Next, if z € D, then the distance between z and C' is positive, say it is p. Then
|¢ — z| > p for all ¢ € C. Thus for this fixed z we have

o(z, t)
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Fubini’s theorem applies and therefore have
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Therefore for z € D we have

M
< —
p

on K.

Now F'({) is clearly continuous as a function of the variable ¢ on C. Indeed, since
K is compact, ¢ is uniformly continuous on K, and hence given € > 0 we can find
d > 0 such that |¢(C1,t1) — ¢(Ca,t2)] < € whenever the distance between ({1,t1)
and ((2,t2) is less than 6§ in K C C x R C R3. In particlular, if |(; — (2| <  then
lo(C1,t) — o(Ca,t)| < e for all t € I. Tt is then easy to see that |F((1) — F({2)| <
€(8 — ), giving the required continuity. In particular F' is measurable (this can be
seen by other methods too). By Theorem 1.1 of Lecture 2, or by problem 5 of HW
1, we see that F'(z) is holomorphic in D. It follows that F'(z) is holomorphic on Q.
Again by either Theoreml1.1 of Lecture 2, or by problem 5 of HW 1, we have

oy I d¢
F(z)—/c<2m,/a ap(§7t)dt>w.
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Apply Fubini again (same argument holds, but now the bound for the integrand is
M/p?) and conclude that

, Bl t
P - [ <2ﬂ /. (?(_Cz))zd4>dt
= ﬁaazgp(z,t)dt

(0%

where yet once again we are using problem 5 from HW 1 etc.

Problem 6, HW 6. Note that since f’(a) # 0 the order of the zero of f at a is
1. From the hypothesis that a is the only solution of f(z) = 0 in D it follows that
f(2) = (2 — a)h(z) with h holomorphic and nowhere vanishing on D. In particular
on D we have

and

2f'(z) _ = W(z)

flz)  z-—a +Zh(z)'

Since h(z) is nowhere vanishing on D, the functions h'(z)/g(z) and 2h/(z)/g(z) are
holomorphic there whence their integrals over C vanish. We then have the following
sequence of equalities: (1/2mi) [, zf'(2)/f(2)dz = (1/2mi) [, 2/(2 —a)dz =a. (The
last equality can be deduced, for example, from Cauchy’s integral formula.) This
proves part (a).

Next let I' = f(C'). Let W be the connected component of C~\T"* which contains
0 (recall f is never zero on C' by our hypotheses). We have seen that

1 dw* 1 f'(z) 1 1
(T, 0) 27TZ/F w* 2mi Jo f(2) T o cZ—a :
Hence (T, w) = 1 for all w € W. This means (1/2m3) [, f'(¢)/(f({) —w)d¢ =1
for all w € W, i.e., that f(z) — w has only one zero, call it g(w), in D, for every
w € W. Thus f(2) —w = (2 — g(w))r(z) on D, where 7(z) is holomorphic and

nowhere vanishing on D. As before (noting that 1’'(2)/r(z) and z1'(2)/r(2) are
holomorphic on D and hence have vanishing integrals over C), we conclude that

gtw) = (1/2xi) [ G

Since z = g(w) is the only solution of f(z)—w = 0in D, it follows that f(g(w)) = w.
Similarly if ¢ € g(W), then we have w = f({) € W, whence the equation
f(z)—w=0

has only one solution in D. Since z = ¢ and z = g(w) are both solutions in D of
the above equation, it follows that g(w) = ¢, i.e. ¢g(f({)) = ¢. This finishes part
(b).

Now for part (c¢). Let ¢ — ((t), 0 < t < 27 be the usual parametirisation on C
(ie., ((t) = a+re’ for 0 <t < 27). Then setting

tnt) = 5ol L0
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and using Problem 2 of HW 5 (see solution above), we conclude that g(w) is holo-
morphic on W.



