LECTURE 9

Date of Lecture: February 2, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Some results were unfortunately not stated in class (see Proposi-
tion 1.1.1 below). Others are a quick summary.

1. Open Mapping Theorem

There are many proofs of the open mapping theorem. Here is a favourite.

Theorem 1.1. Let f: Q — C be a non-constant analytic function on a region 2.
The f is an open map, i.e., f(U) is an open set in C whenever U is open in Q.

Proof. Let wy € C be in f(£2). We have to show that there is an open neighbour-
hood V' of wy such that V' C f(2). To that end, pick a pre-image zyp € © of wy.
Let § > 0 be so small that B(zg, §) C Q and z is the only solution of f(2) = wp
in B(zg, 0). Such a § exists since f(z) — wp is non-constant, whence its zeros are
isolated. Let C be the bounding circle {|z — zo| = ¢} oriented in the usual way, via
the parameterisation t — zy + det, 0 < t < 27. Let n be the order of the order of
the zero of f(z) —wy at zg. Note that n > 1 since f(z9) = wp. From the Argument
Principle we have
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Let T be the the image path f(C), i.e., I is the path given by t — f(29 + de't),

0 <t < 2m. Then (*) can be re-written as 5= [, (w — wo) Tdw = n, ie.,

(T, wp) = n.

Let V be the connected component of C ~\. I'* containing wg. Then, since the
winding number is constant on connected components of C \ I'*, we get

n(T,w)=n (weV).

It follows that 5= [, f'(z)/(f(2)—w)dz = n for w € V. By the Argument Principle,
this means f(z) —w = 0 has n solutions in B(zp, ) (counted with multiplicity)
for every w € V. Since n > 1, this shows that V' C f(Q2), which is what we were
required to show. O

Note that the method of the proof also proves most of the following (compare
with [A, p.131, Thm 11]).

Proposition 1.1.1. Suppose that f(z) is analytic at zo, f(z0) = wo, and that
f(2) —wo has a zero of order n at zy. If € > 0 is sufficiently small, there exists a
0 > 0 such that for all a with 0 < |a —wg| < & the equation f(z) = a has exactly n
roots in the disc |z — zp| < €.



Proof. The only issue is the phrase “exactly n roots” in the statement. This is taken
to mean the n roots of the equation f(z) = w are distinct for w in the punctured
disc 0 < |a — wp| < §. This is easily achieved if the positive number ¢ in the proof
of Theorem 1.1 is taken to be so small that in the closed disc of radius § centred
at zo we have f/(z) # 0 if z # z9. Since f(z) is non-constant (otherwise the order
of f(z) — wg at zp does not make sense), f'(z) cannot vanish identically. Its zeros,
if they exist, are isolated making the choice of such a § possible. (I

2. Harmonic Functions

2.1. A C? function u on an open set W in R” is said to be harmonic if

0%u 0u
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where x;, ¢ = 1,...,n are the standard coordinate functions on R™. It turns out

that harmonic functions are necessarily C*°.

Suppose & € W and B is a ball centred at @ whose closure lies in W. Let S = 0B
the corresponding bounding sphere. Let V' denote the Lebesgue measure on R"
and A the “surface area” measure on S. It turns out that harmonic functions u
have the following two equivalent averaging properties:

(A1) u(x) = ﬁ/}gudv
and
(As) u(zx) = ﬁ/gud&

Conversely, it turns out that if u is continuous on W and has the averaging property
then w is harmonic.

We will not be proving any of these results for general n. However for n = 2
we will prove the averaging property for harmonic functions. This is essentially
Cauchy’s integral formula for the centre of a disc, as we will see. The connection
with our course is that the real and imaginary parts of an analytic function are
harmonic.

Theorem 2.1.1. Let f = u+iv be an analytic function on a region Q with u and
v the real and imaginary parts of f. Then u and v are harmonic.

Proof. We know that u and v are C*. In particular it is C? Now f' = ug + iv,.
Applying Cauchy-Riemann to f’ we see that

(%) Ugy = Vgy

and

() Ugy = —Vgpz-

By Cauchy-Riemann for f, we have vy = (vg)y = (—uy)y = —uyy. Substituting

in (%) we get ugy + uy,y = 0. Similarly u,, = v,, and substituting in (s*) we get
Vg + Vyy = 0. O



2.2. Harmonic Conjugates. Let u be a harmonic function on a region 2 in C.
A harmonic conjugate of u is a function v on € such that w + v is analytic on
Q. Note that a harmonic conjugate of u is necessarily harmonic by Theorem 2.1.1.
If v and w are harmonic conjugates of u then by Cauchy-Riemann, v, = w, and
vy = wy Whence v — w is constant on Q. Thus harmonic conjugates are unique up
to a real constant.

Theorem 2.2.1. Ifu is harmonic on disc D in C then it has a harmonic conjugate.

Remark: Instead of a disc we can substitute any simply connected region as the
general Cauchy theorem will show when we prove it. Equally well one can use
Green’s Theorem, or for that matter De Rham’s theorem to prove the statement
for simply connected regions.

Proof. Let U = u,, V = —u, and g = U + V. Since u is C? we have uzy = uy,
giving U, = —V,. Further, the condition ug, + uyy = 0 translates to U, = V.
Thus U and V satisfy the Cauchy-Riemann equations, whence g is analytic. We
have seen that on a disc analytic functions have primitives. Let f be a primitive of
g. Without loss of generality we may assume f(z9) = u(zo) where zq is the centre
of D. Suppose f = ¢ + i1 is the decomposition of f into its real and imaginary
parts. Note that since f(z9) = u(z0) € R, ¥(20) = 0 and u(z9) = ¢(20). Now
g=[" =z +ithy =y —ipy,. Thus ¢, = u, and ¢, = u,. Since u(z9) = ¥(20),
we get u = . It follows that ¢ is a harmonic conjugate of wu. (]

Remark 2.2.2. Suppose u and D are as in the theorem. If one considers the
differential w = —uydr + u,dy then one sees that dw = (Upy + Uyy)dz A dy =
0. On D, or for that matter any simply connected region €2, which necessarily
has its first cohomology equal to zero (for, given a base point zy € 2, we have
HY(Q, R) = Hom(7(£, 20), R) = 0), De Rham’s theorem gives us the existence of
a O? function v such that dv = w. It is easy to see that v is a harmonic conjugate of
u. Equivalently, v is obtained by setting v(z) = f% w where 7, is any path starting
at zp and ending at z. The path independence is assured by Green’s theorem, which
is Stokes’ theorem on the plane.
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