
LECTURE 7

Date of Lecture: January 25, 2017

As usual, this is only a summary. Not all proofs given in class are here.

1. Winding Number

The winding number of a closed path is strictly speaking a topological invariant.
In fact many of the proofs we give of statements using winding numbers can be
given without the full notion of a winding number of an arbitrary closed path.
That said, it is historical, and makes many statements and proofs a little more
transparent (at least to function theorists) and requires very little to develop. In
fact the only theorem we need is the following.

Theorem 1.1. Let γ : [α, β]→ C be a closed path and a ∈ C r γ∗. Then∫
γ

dz

z − a
= 2πin

for some n ∈ Z.

Proof. Write z(t) = γ(t) for α ≤ t ≤ β. Define h : [α, β]→ C by

h(t) =

∫ t

α

z′(s)ds

z(s)− a
(α ≤ t ≤ β).

It is easy to check that

d

dt
[e−h(t)(z(t)− a)] = 0 (α ≤ t ≤ β).

It follows that e−h(t)(z(t) − a) is a constant. Since z(α) = z(β), γ being a closed
path, it follows that

eh(α) = eh(β).

Now h(α) = 0. It follows that eh(β) = 1. In other words

h(β) = 2πin

for some integer n. �

Definition 1.1.1. The winding number of a closed path γ with respect to a point
a not lying on γ∗ is the integer

η(γ, a) =
1

2πi

∫
γ

dz

z − a
.
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1.2. Winding number on components. Recall that the connected components
defined by γ are by definition the connected components of C \ γ∗. There is, as is
easy to verify, only one connected component which is unbounded. More precisely, if
S is the Riemann sphere, there is only one connected component of S\γ∗ containing
∞, and the intersection of this open set with C is the unique unbounded connected
component defined by γ.

Proposition 1.2.1. Let γ be a closed path in C. Then the winding number of γ
is constant on the connected components defined by γ and is zero on the unbounded
component.

Proof. The map a 7→ (1/2πi)
∫
γ
dz/(z−a) is continuous (in fact analytic) on Crγ∗.

Being integer valued it is locally constant. Thus it is constant on the connected
components defined by γ∗. To show it is zero on the unbounded component U of
C r γ∗, we pick a positive real number ε. Since U is unbounded, and since γ∗ is
compact, there exists a ∈ U such that

min
z∈γ∗
|z − a| > 1

ε
.

Let L be the length of γ, i.e., L =
∫
γ
|dz|. Then∣∣∣∣∣ 1

2πi

∫
γ

dz

z − a

∣∣∣∣∣ ≤ 1

2π
Lε.

It follows that η(γ, a) = 0. �

Remark 1.2.2. Let a ∈ C and z0 ∈ C r {a}. Recall that we have a canoncial
isomorphism

(∗) π1(C r {a}, z0) −→∼ Z

where the pre-image of 1 ∈ Z is the circle C with centre a, starting and ending
at z0 with the orientation of C being the counter-clockwise direction. We will see
later in the course that (∗) is the map

[γ] 7→ η(γ, a)

where γ is a closed path representing the class [γ]. We point out that there is always
a closed path (i.e., a C1 closed curve starting and ending at z0) which represents
the class [γ]. That two such paths representing [γ] will yield the same winding
number is a form of Cauchy’s theorem, and we will do this later.

2. Local properties of analytic functions

Fix a region Ω throughout the discussion in this section. Local properties of an
analytic function depend on the following Lemma.

2.1. Orders of vanishing.

Lemma 2.1.1. Let a ∈ Ω and suppose f(z) is a non-zero analytic function on Ω.
Then there exists a unique analytic function g(z) on Ω such that

(i) g(a) 6= 0,
(ii) f(z) = (z − a)ng(z) for z ∈ Ω for some non-negative integer n.

The non-negative integer n in (ii) is unique.
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Proof. Suppose g and h are analytic functions in a neighbourhood of a, neither
vanishing at a, and suppose we have non-negative integers l and k such that

(z − a)lg(z) = (z − a)kh(z)

in a neighbourhood of a. Then it is easy to see that l = k. Indeed, without loss
generality suppose l ≥ k. Then in a neighbourhood of a, (z− a)l−kg(z) = h(z) and
since h(a) 6= 0 we have l = k. The uniqueness assertion about the integer n in (ii)
follows immediately. The uniqueness of g, if it exists, is also then clear, for g(z)
is necessarily then the unique continuous extension of the holomorphic function
f(z)/(z−a)n on Ωr{a}. It remains to show that there exists a g satisfying (i) and
(ii). It is enough to show this in a ball B centred at a contained in Ω, for if g exists
on B it agrees with f(z)/(z − a)n on B r {a} and hence extends holomorphically
to Ω. On B we have a power series expansion of f(z), say

f(z) =

∞∑
k=0

ck(z − a)k.

Since f is a non-zero function, not all the ck’s are zero. Let n be the smallest
index k such that ck 6= 0. Then it is apparent that f(z) = (z − a)ng(z) where
g(z) =

∑∞
k=n ck(z − a)n−k, and clearly the series

∑∞
k=n ck(z − a)n−k has the same

radius of convergence as
∑∞
k=0 ck(z − a)k has, so that in particular g is defined on

B. �

Definition 2.1.2. The integer n in the Lemma is called the order of f at a.

2.2. The Identity Principle.

Lemma 2.2.1. Let f(z) be analytic on Ω and suppose there exists a point a in Ω
such that f (n)(a) = 0 for n ≥ 1. Then f is a constant.

Proof. Let
S = {z ∈ Ω | f (n)(z) = 0 for n ≥ 1}.

Then S is non-empty (for a ∈ S), and clearly closed, being an intersection of closed
sets. On the other hand, if b ∈ S, then the power series expansion of f(z) around
b is

f(z) =

∞∑
n=0

f (n)(b)

n!
(z − b)n

and this has only one non-zero coefficient, namely the constant coefficent. It follows
that f is a constant in an open disc D around b, in particular D ⊂ S. It follows that
S is open. Since Ω is connected, this means S = Ω, i.e., f (n)(z) = 0 for all n ≥ 1
and all z ∈ Ω. In particular f ′(z) = 0 for every z ∈ Ω, whence f is a constant. �

Theorem 2.2.2 (The Identity Principle). Let a ∈ Ω and let {zn} be a sequence in
Ω such that zn → a as n → ∞ with zn 6= a for an infinite number of n. If f is
analytic on Ω and f(zn) = 0 for every n, then f ≡ 0 on Ω.

Proof. By hypothesis have a subsequence {znk
} of {zn} such that znk

6= a for any
k. Replacing {zn} by the subsequence {znk

} if necessary, we may assume zn 6= a
for any n.

If f is not identically zero, then by Lemma 2.1.1 we can write f(z) = (z−a)ng(z)
with n a non-negative integer and g is a holomorphic function on Ω such that
g(a) 6= 0. Thus

0 = f(zn) = (zn − a)g(zn) (n ∈ N).
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It follows that g(zn) = 0 for every n, whence g(a) = 0, giving a contradiction. �

Example 2.2.3. Recall we defined the exponential function ez last time. It is an
entire function. Define

cos z =
eiz + e−iz

2
,

sin z =
eiz − e−iz

2i
.

The functions cos z and sin z, from their definitions, are entire. Moreover, their
restrictions to the real axis are the usual trignometric functions, i.e., cosine and
sine from what we proved last time. We claim that

cosz + sinz = 1

for every z ∈ C. Consider the entire function f(z) = cosz + sin2 z − 1. It is zero
when restricted to R. Therefore by the Identity Principle it is zero everywhere,
proving the claim.

This example also helps us understand the term “Identity Principle”. It was
originally called the principle of permanence of functional relations or the prin-
ciple of permanence of functional identities. The idea being that that functional
identities (or relations) like cos2 t + sin2 t = 1 on a subset of C with a limit point
are permanent, i.e., their validity is on the entire domain where both sided of the
identity are defined.
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