LECTURE 6

Date of Lecture: January 19, 2017

As usual, this is only a summary. Not all proofs given in class are here.
Recall that for a path ~: [a, )] — C, the symbol f7 f(2)|dz| is shorthand for

the integral of fo~ with respect to the “arc-length measure”, i.e., f7 f(2)|dz| =

f; Fv(@)|Y (t)|dt. Equivalently, it is the integral of fo~ with respect to the
total variation measure on [a,b] associated to the measure p on [a, b] (together
with the usual Lebesgue sigma-algebra) given by E — [ r 7 (t)dt. Indeed, we

have f“/ f(z)dz = ff(fo’y)d,u and the total variation measure |u| of p has Radon-
Nikodym derivative |v/].
1. Maximum modulus

1.1. Suppose f(z) is analytic on a region  and |f(z)| achieves a maximum at
a € Q. Say

(1.1.1) |f(a)| = M.
Let C be a circle of radius R centred at a such that the closed disc B(a, R) is

contained in 2. We have
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Thus all the inequalities above collapse to equalities, yielding,

(1.1.2) /C FOdC] = /C M),

Now M — |f| > 0 on B(a, R) and is moreover continuous. Therefore (1.1.2) shows
that

lFOl=M  (C€0).
Since C' was an arbitrary circle centred at a such that the closed disc it bounds is
contained in 2 we have
(1.1.3) If(Ol=M (¢ € Ba, R)).
In particular the set
T={zeQ] [f(z)]| =M}
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is open, since every point in 7" has a disc around it contained in 7. On the other
hand it is clearly closed, since | f| is continuous on 2. Since €Q is a region, this means
T = Q, for T is non-empty (for a € T')). We have therefore proved the following.

(%) If f is analytic on a region 2 and |f| has a mazimum in Q then |f| is a con-
stant.

In fact one can prove more.

Theorem 1.1.4 (The Maximum Modulus Theorem). If f is analytic on a region
Q and |f| has a mazimum in Q then f is a constant.

Proof. Let f = u 4+ iv be the usual decomposition of f into its real and imaginary
parts. As usual, let x and y denote the real and imaginary coordinate variables on
2 and z the complex coordinate variable on Q. From (x) we see that |f| = K a
constant. If K = 0 there is nothing to prove. Suppose K > 0. We have u?+v? = K?
whence

(1.1.4.1) Ullg + VUg = Uty + vy = 0.
Now
fI' = (u—iv)(us + ivs)
= Uty + VU, + i(uv, — vuy)
= Ully + VU — (uny + vUy) (Cauchy-Riemann)

-0 (by (1.1.4.1)).

Since |f| = K > 0, therefore f is nowhere vanishing on { and we get f’ =0 on Q.
This proves the theorem since (2 is connecred. O

Corollary 1.1.5. If f is non-constant then | f]| cannot attain a mazimum in 2. In
particular if Q0 is bounded and f(z) is analytic on Q, then M := max, g |f(2)| is
attained by |f| on the boundary Q ~ Q.

Proof. Obvious. 4

Remark 1.1.6. We will give a different and a more natural proof later using the
open mapping theorem. The theorem and its corollary above are both referred to
as the mazimum modulus principle.

2. Schwarz’s Lemma

As usual A will denote the open unit disc centred at the origin, and A its closure.

Theorem 2.1 (Schwarz’s Lemma). Suppose f: A — A is analytic with f(0) = 0.
Then

(2.1.1) R <[zl (z€A).
Moreover, if |f(2)| = |z| for some z # 0, or if | f'(0)] =1, then
(2.1.2) f(z) =cz

with ¢ a constant of absolute value 1.



Proof. Define g: A — C by
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z

9(z) =
f(0) z=0.
The map ¢ is continuous on A and holomorphic on A*. By Riemann’s removable

singularities theorem, g is holomorphic on A. Let 0 < r < 1. Applying the
maximum modulus principle for g on B(0,r) we get

1

l9(2)] < max [g(Q)] < =

Letting  — 1 we get |g| < 1 on A, whence |f(2)| < |z| for z € A. If either of
the two conditions in the second part of the theorem is satisfied then |g| attains its
maximum, namely the value 1, in A, whence by the maximum modulus principle
g is a constant ¢ with |¢| = 1. This proves the second part. O

(z € B(0,7)).

3. Exponentials

3.1. Product of power series. Suppose f(z) = a,2" and g(z) = Y b,2" are
two convergent power series and B = B(0,r) is in the intersections of the two discs
of convegence. Then fg is analytic on B and hence has a power series expansion
around 0 in B

f(z)= Z ez
n=0
We know (using the Leibnitz Rule for differentiation in the second line) that
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thus giving

(3.1.1) Cn =Y aibp_i.

i=0
3.2. Exponentials. Consider the power series E(z) = >~ z"/n!. Since (n +
!/n! =n — oo as n — 00, E(z) has radius of convergence R = oo, whence F(z)
represents an entire function. Let a and 8 be complex numbers. Applying (3.1.1) to
the power series E(az) and E(8z) we see that E(az)FE(8z) = E((a+ 8)z) whence,
setting z = 1, we get

(3.2.1) B(0)B(B) = Ba+6)  (afeC).
Clearly

o E(0) =1,
e F'(2) = E(2).



It follows that
E(s)=¢® (s e R),
the usual exponential, and
E(it) = cos(t) + isin(t) (t e R).
Indeed, the relationships E’(s) = E(s) and E(0) = 0 force the relation E(s) = e®
for s € R, for e® is the unique solution of the differential equation
dy

— = 0) =1.
75 = vy(0)
Also, by the chain rule, if h(t) = E(it) for t € R, then h/(t) = iE'(it) = iE(it) =
ih(t). Thus if h(t) = C(t) +iS(¢) with C and S real-valued, then ih(t) = h'(t) =
C'(t) +145'(¢), giving C'(t) = —S(t) and S'(¢t) = C(¢). Thus C and S are solutions
of the

d?y

@z =Y
and the initial conditions force the relations C(t) = cos(t) and S(t) = sin(t). We
define the exponential function as

(3.2.2) e”:= E(z).
In particular, with this definition, we have Euler’s formula
e = cos(t) +isin(t)  (t€R).

In general if z = x + iy is the break-up of a complex number z into its real and
imaginary parts, then
e® = eY(cos(x) + isin(x)).



