LECTURE 6

Date of Lecture: January 19, 2017

As usual, this is only a summary. Not all proofs given in class are here.

Recall that for a path $\gamma: [a, b] \to \mathbf{C}$, the symbol $\int_{\gamma} f(z) |dz|$ is shorthand for the integral of $f \circ \gamma$ with respect to the "arc-length measure", i.e., $\int_{\gamma} f(z) |dz| = \int_{a}^{b} f(\gamma(t)) |\gamma'(t)| dt$. Equivalently, it is the integral of $f \circ \gamma$ with respect to the total variation measure on [a, b] associated to the measure μ on [a, b] (together with the usual Lebesgue sigma-algebra) given by $E \mapsto \int_{E} \gamma'(t) dt$. Indeed, we have $\int_{\gamma} f(z) dz = \int_{a}^{b} (f \circ \gamma) d\mu$ and the total variation measure $|\mu|$ of μ has Radon-Nikodym derivative $|\gamma'|$.

1. Maximum modulus

1.1. Suppose f(z) is analytic on a region Ω and |f(z)| achieves a maximum at $a \in \Omega$. Say

$$(1.1.1) |f(a)| = M$$

Let C be a circle of radius R centred at a such that the closed disc $\overline{B}(a, R)$ is contained in Ω . We have

$$2\pi RM = 2\pi R|f(a)| = R \left| \int_C \frac{f(\zeta)d\zeta}{\zeta - a} \right|$$

$$\leq R \int_C \frac{|f(\zeta)|}{|\zeta - a|} |d\zeta|$$

$$\leq \int_C |f(\zeta)| |d\zeta|$$

$$\leq \int_C Md|\zeta|$$

$$\leq 2\pi RM.$$

Thus all the inequalities above collapse to equalities, yielding,

(1.1.2)
$$\int_C |f(\zeta)| |d\zeta| = \int_C M d|\zeta|.$$

Now $M - |f| \ge 0$ on $\overline{B}(a, R)$ and is moreover continuous. Therefore (1.1.2) shows that

$$|f(\zeta)| = M \qquad (\zeta \in C)$$

Since C was an arbitrary circle centred at a such that the closed disc it bounds is contained in Ω we have

(1.1.3)
$$|f(\zeta)| = M \qquad (\zeta \in \overline{B}(a, R)).$$

In particular the set

$$T = \{ z \in \Omega \mid |f(z)| = M \}$$

is open, since every point in T has a disc around it contained in T. On the other hand it is clearly closed, since |f| is continuous on Ω . Since Ω is a region, this means $T = \Omega$, for T is non-empty (for $a \in T$)). We have therefore proved the following.

(*) If f is analytic on a region Ω and |f| has a maximum in Ω then |f| is a constant.

In fact one can prove more.

Theorem 1.1.4 (The Maximum Modulus Theorem). If f is analytic on a region Ω and |f| has a maximum in Ω then f is a constant.

Proof. Let f = u + iv be the usual decomposition of f into its real and imaginary parts. As usual, let x and y denote the real and imaginary coordinate variables on Ω and z the complex coordinate variable on Ω . From (*) we see that |f| = K a constant. If K = 0 there is nothing to prove. Suppose K > 0. We have $u^2 + v^2 = K^2$ whence

$$(1.1.4.1) uu_x + vv_x = uu_y + vv_y = 0.$$

Now

$$ff' = (u - iv)(u_x + iv_x)$$

= $uu_x + vv_x + i(uv_x - vu_x)$
= $uu_x + vv_x - i(uu_y + vv_y)$ (Cauchy-Riemann)
= 0 (by (1.1.4.1)).

Since $|\bar{f}| = K > 0$, therefore \bar{f} is nowhere vanishing on Ω and we get $f' \equiv 0$ on Ω . This proves the theorem since Ω is connecred.

Corollary 1.1.5. If f is non-constant then |f| cannot attain a maximum in Ω . In particular if Ω is bounded and f(z) is analytic on $\overline{\Omega}$, then $M := \max_{z \in \overline{\Omega}} |f(z)|$ is attained by |f| on the boundary $\overline{\Omega} \setminus \Omega$.

Proof. Obvious.

Remark 1.1.6. We will give a different and a more natural proof later using the open mapping theorem. The theorem and its corollary above are both referred to as the *maximum modulus principle*.

2. Schwarz's Lemma

As usual Δ will denote the open unit disc centred at the origin, and $\overline{\Delta}$ its closure.

Theorem 2.1 (Schwarz's Lemma). Suppose $f: \Delta \to \Delta$ is analytic with f(0) = 0. Then

$$(2.1.1) |f(z)| \le |z| (z \in \Delta)$$

Moreover, if |f(z)| = |z| for some $z \neq 0$, or if |f'(0)| = 1, then

$$(2.1.2) f(z) = cz$$

with c a constant of absolute value 1.

Proof. Define $g: \Delta \to \mathbf{C}$ by

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \in \Delta^* := \Delta \smallsetminus \{0\} \\ \\ f'(0) & z = 0. \end{cases}$$

The map g is continuous on Δ and holomorphic on Δ^* . By Riemann's removable singularities theorem, g is holomorphic on Δ . Let 0 < r < 1. Applying the maximum modulus principle for g on $\overline{B}(0,r)$ we get

$$|g(z)| \le \max_{\{|\zeta|=r\}} |g(\zeta)| \le \frac{1}{r} \qquad (z \in \overline{B}(0,r)).$$

Letting $r \to 1$ we get $|g| \leq 1$ on Δ , whence $|f(z)| \leq |z|$ for $z \in \Delta$. If either of the two conditions in the second part of the theorem is satisfied then |g| attains its maximum, namely the value 1, in Δ , whence by the maximum modulus principle g is a constant c with |c| = 1. This proves the second part.

3. Exponentials

3.1. Product of power series. Suppose $f(z) = \sum a_n z^n$ and $g(z) = \sum b_n z^n$ are two convergent power series and $\overline{B} = \overline{B}(0, r)$ is in the intersections of the two discs of convegence. Then fg is analytic on \overline{B} and hence has a power series expansion around 0 in \overline{B}

$$f(z) = \sum_{n=0}^{\infty} c_n z^n$$

We know (using the Leibnitz Rule for differentiation in the second line) that

$$c_n = \frac{(fg)^{(n)}(0)}{n!}$$

= $\frac{\sum_{i=0}^n {n \choose i} f^{(i)}(0) g^{(n-i)}(0)}{n!}$
= $\sum_{i=0}^n \frac{f^{(i)}(0)}{i!} \frac{g^{(n-i)}(0)}{(n-i)!}$

thus giving

(3.1.1)
$$c_n = \sum_{i=0}^n a_i b_{n-i}$$

3.2. Exponentials. Consider the power series $E(z) = \sum_{n=0}^{\infty} z^n/n!$. Since $(n + 1)!/n! = n \to \infty$ as $n \to \infty$, E(z) has radius of convergence $R = \infty$, whence E(z) represents an entire function. Let α and β be complex numbers. Applying (3.1.1) to the power series $E(\alpha z)$ and $E(\beta z)$ we see that $E(\alpha z)E(\beta z) = E((\alpha + \beta)z)$ whence, setting z = 1, we get

(3.2.1)
$$E(\alpha)E(\beta) = E(\alpha + \beta) \qquad (\alpha, \beta \in \mathbf{C}).$$

Clearly

It follows that

$$E(s) = e^s \qquad (s \in \mathbf{R}),$$

the usual exponential, and

$$E(it) = \cos(t) + i\sin(t) \qquad (t \in \mathbf{R}).$$

Indeed, the relationships E'(s) = E(s) and E(0) = 0 force the relation $E(s) = e^s$ for $s \in \mathbf{R}$, for e^s is the unique solution of the differential equation

$$\frac{dy}{ds} = y, y(0) = 1.$$

Also, by the chain rule, if h(t) = E(it) for $t \in \mathbf{R}$, then h'(t) = iE'(it) = iE(it) = ih(t). Thus if h(t) = C(t) + iS(t) with C and S real-valued, then ih(t) = h'(t) = C'(t) + iS'(t), giving C'(t) = -S(t) and S'(t) = C(t). Thus C and S are solutions of the

$$\frac{d^2y}{dt^2} = -y$$

and the initial conditions force the relations $C(t) = \cos(t)$ and $S(t) = \sin(t)$. We define the exponential function as

(3.2.2)
$$e^z := E(z).$$

In particular, with this definition, we have Euler's formula

$$e^{it} = \cos(t) + i\sin(t)$$
 $(t \in \mathbf{R}).$

In general if z = x + iy is the break-up of a complex number z into its real and imaginary parts, then

$$e^z = e^y(\cos(x) + i\sin(x)).$$