LECTURE 6

Date of Lecture: January 19, 2017
As usual, this is only a summary. Not all proofs given in class are here.
Recall that for a path $\gamma:[a, b] \rightarrow \mathbf{C}$, the symbol $\int_{\gamma} f(z)|d z|$ is shorthand for the integral of $f \circ \gamma$ with respect to the "arc-length measure", i.e., $\int_{\gamma} f(z)|d z|=$ $\int_{a}^{b} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t$. Equivalently, it is the integral of $f \circ \gamma$ with respect to the total variation measure on $[a, b]$ associated to the measure μ on $[a, b]$ (together with the usual Lebesgue sigma-algebra) given by $E \mapsto \int_{E} \gamma^{\prime}(t) d t$. Indeed, we have $\int_{\gamma} f(z) d z=\int_{a}^{b}(f \circ \gamma) d \mu$ and the total variation measure $|\mu|$ of μ has RadonNikodym derivative $\left|\gamma^{\prime}\right|$.

1. Maximum modulus

1.1. Suppose $f(z)$ is analytic on a region Ω and $|f(z)|$ achieves a maximum at $a \in \Omega$. Say

$$
\begin{equation*}
|f(a)|=M \tag{1.1.1}
\end{equation*}
$$

Let C be a circle of radius R centred at a such that the closed disc $\bar{B}(a, R)$ is contained in Ω. We have

$$
\begin{aligned}
2 \pi R M=2 \pi R|f(a)| & =R\left|\int_{C} \frac{f(\zeta) d \zeta}{\zeta-a}\right| \\
& \leq R \int_{C} \frac{|f(\zeta)|}{|\zeta-a|}|d \zeta| \\
& \leq \int_{C}|f(\zeta)||d \zeta| \\
& \leq \int_{C} M d|\zeta| \\
& \leq 2 \pi R M .
\end{aligned}
$$

Thus all the inequalities above collapse to equalities, yielding,

$$
\begin{equation*}
\int_{C}|f(\zeta)||d \zeta|=\int_{C} M d|\zeta| \tag{1.1.2}
\end{equation*}
$$

Now $M-|f| \geq 0$ on $\bar{B}(a, R)$ and is moreover continuous. Therefore (1.1.2) shows that

$$
|f(\zeta)|=M \quad(\zeta \in C)
$$

Since C was an arbitrary circle centred at a such that the closed disc it bounds is contained in Ω we have

$$
\begin{equation*}
|f(\zeta)|=M \quad(\zeta \in \bar{B}(a, R)) \tag{1.1.3}
\end{equation*}
$$

In particular the set

$$
T=\{z \in \Omega| | f(z) \mid=M\}
$$

is open, since every point in T has a disc around it contained in T. On the other hand it is clearly closed, since $|f|$ is continuous on Ω. Since Ω is a region, this means $T=\Omega$, for T is non-empty (for $a \in T)$). We have therefore proved the following.
(*) If f is analytic on a region Ω and $|f|$ has a maximum in Ω then $|f|$ is a constant.

In fact one can prove more.
Theorem 1.1.4 (The Maximum Modulus Theorem). If f is analytic on a region Ω and $|f|$ has a maximum in Ω then f is a constant.

Proof. Let $f=u+i v$ be the usual decomposition of f into its real and imaginary parts. As usual, let x and y denote the real and imaginary coordinate variables on Ω and z the complex coordinate variable on Ω. From (*) we see that $|f|=K$ a constant. If $K=0$ there is nothing to prove. Suppose $K>0$. We have $u^{2}+v^{2}=K^{2}$ whence

$$
\begin{equation*}
u u_{x}+v v_{x}=u u_{y}+v v_{y}=0 \tag{1.1.4.1}
\end{equation*}
$$

Now

$$
\begin{array}{rlrl}
\bar{f} f^{\prime} & =(u-i v)\left(u_{x}+i v_{x}\right) & \\
& =u u_{x}+v v_{x}+i\left(u v_{x}-v u_{x}\right) \\
& =u u_{x}+v v_{x}-i\left(u u_{y}+v v_{y}\right) & & (\text { Cauchy-Riemann) } \\
& =0 & & (\text { by }(1.1 .4 .1)) .
\end{array}
$$

Since $|\bar{f}|=K>0$, therefore \bar{f} is nowhere vanishing on Ω and we get $f^{\prime} \equiv 0$ on Ω. This proves the theorem since Ω is connecred.

Corollary 1.1.5. If f is non-constant then $|f|$ cannot attain a maximum in Ω. In particular if Ω is bounded and $f(z)$ is analytic on $\bar{\Omega}$, then $M:=\max _{z \in \bar{\Omega}}|f(z)|$ is attained by $|f|$ on the boundary $\bar{\Omega} \backslash \Omega$.
Proof. Obvious.
Remark 1.1.6. We will give a different and a more natural proof later using the open mapping theorem. The theorem and its corollary above are both referred to as the maximum modulus principle.

2. Schwarz's Lemma

As usual Δ will denote the open unit disc centred at the origin, and $\bar{\Delta}$ its closure.
Theorem 2.1 (Schwarz's Lemma). Suppose $f: \Delta \rightarrow \Delta$ is analytic with $f(0)=0$. Then

$$
\begin{equation*}
|f(z)| \leq|z| \quad(z \in \Delta) \tag{2.1.1}
\end{equation*}
$$

Moreover, if $|f(z)|=|z|$ for some $z \neq 0$, or if $\left|f^{\prime}(0)\right|=1$, then

$$
\begin{equation*}
f(z)=c z \tag{2.1.2}
\end{equation*}
$$

with c a constant of absolute value 1.

Proof. Define $g: \Delta \rightarrow \mathbf{C}$ by

$$
g(z)= \begin{cases}\frac{f(z)}{z} & z \in \Delta^{*}:=\Delta \backslash\{0\} \\ f^{\prime}(0) & z=0\end{cases}
$$

The map g is continuous on Δ and holomorphic on Δ^{*}. By Riemann's removable singularities theorem, g is holomorphic on Δ. Let $0<r<1$. Applying the maximum modulus principle for g on $\bar{B}(0, r)$ we get

$$
|g(z)| \leq \max _{\{|\zeta|=r\}}|g(\zeta)| \leq \frac{1}{r} \quad(z \in \bar{B}(0, r))
$$

Letting $r \rightarrow 1$ we get $|g| \leq 1$ on Δ, whence $|f(z)| \leq|z|$ for $z \in \Delta$. If either of the two conditions in the second part of the theorem is satisfied then $|g|$ attains its maximum, namely the value 1 , in Δ, whence by the maximum modulus principle g is a constant c with $|c|=1$. This proves the second part.

3. Exponentials

3.1. Product of power series. Suppose $f(z)=\sum a_{n} z^{n}$ and $g(z)=\sum b_{n} z^{n}$ are two convergent power series and $\bar{B}=\bar{B}(0, r)$ is in the intersections of the two discs of convegence. Then $f g$ is analytic on \bar{B} and hence has a power series expansion around 0 in \bar{B}

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

We know (using the Leibnitz Rule for differentiation in the second line) that

$$
\begin{aligned}
c_{n} & =\frac{(f g)^{(n)}(0)}{n!} \\
& =\frac{\sum_{i=0}^{n}\binom{n}{i} f^{(i)}(0) g^{(n-i)}(0)}{n!} \\
& =\sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!} \frac{g^{(n-i)}(0)}{(n-i)!}
\end{aligned}
$$

thus giving

$$
\begin{equation*}
c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i} \tag{3.1.1}
\end{equation*}
$$

3.2. Exponentials. Consider the power series $E(z)=\sum_{n=0}^{\infty} z^{n} / n$!. Since $(n+$ $1)!/ n!=n \rightarrow \infty$ as $n \rightarrow \infty, E(z)$ has radius of convergence $R=\infty$, whence $E(z)$ represents an entire function. Let α and β be complex numbers. Applying (3.1.1) to the power series $E(\alpha z)$ and $E(\beta z)$ we see that $E(\alpha z) E(\beta z)=E((\alpha+\beta) z)$ whence, setting $z=1$, we get

$$
\begin{equation*}
E(\alpha) E(\beta)=E(\alpha+\beta) \quad(\alpha, \beta \in \mathbf{C}) \tag{3.2.1}
\end{equation*}
$$

Clearly

- $E(0)=1$,
- $E^{\prime}(z)=E(z)$.

It follows that

$$
E(s)=e^{s} \quad(s \in \mathbf{R})
$$

the usual exponential, and

$$
E(i t)=\cos (t)+i \sin (t) \quad(t \in \mathbf{R})
$$

Indeed, the relationships $E^{\prime}(s)=E(s)$ and $E(0)=0$ force the relation $E(s)=e^{s}$ for $s \in \mathbf{R}$, for e^{s} is the unique solution of the differential equation

$$
\frac{d y}{d s}=y, y(0)=1
$$

Also, by the chain rule, if $h(t)=E(i t)$ for $t \in \mathbf{R}$, then $h^{\prime}(t)=i E^{\prime}(i t)=i E(i t)=$ $i h(t)$. Thus if $h(t)=C(t)+i S(t)$ with C and S real-valued, then $i h(t)=h^{\prime}(t)=$ $C^{\prime}(t)+i S^{\prime}(t)$, giving $C^{\prime}(t)=-S(t)$ and $S^{\prime}(t)=C(t)$. Thus C and S are solutions of the

$$
\frac{d^{2} y}{d t^{2}}=-y
$$

and the initial conditions force the relations $C(t)=\cos (t)$ and $S(t)=\sin (t)$. We define the exponential function as

$$
\begin{equation*}
e^{z}:=E(z) \tag{3.2.2}
\end{equation*}
$$

In particular, with this definition, we have Euler's formula

$$
e^{i t}=\cos (t)+i \sin (t) \quad(t \in \mathbf{R})
$$

In general if $z=x+i y$ is the break-up of a complex number z into its real and imaginary parts, then

$$
e^{z}=e^{y}(\cos (x)+i \sin (x))
$$

