
LECTURE 5

Date of Lecture: January 18, 2017

As usual, this is only a summary. Not all proofs given in class are here.

1. This and that

Here are some facts.
1) If

∑
cn(z − a)n is a power series with radius of convergence R, and if l =

limn→∞|an/an+1| exists as an extended real number (i.e., ∞ is allowed as a limit)
then R = l. We will give a proof in a separate note. In the meanwhile feel free to
use it in doing problems in HWs, quizzes, and exams.

2) The version of Cauchy’s theorem we proved is due to Goursat. Before Gour-
sat, one assumed that a holomorphic function was C1 in order to prove Cauchy’s
theorem.

3) We have repeatedly used the fact that if fn : X → C, n = 0, 1, . . . is a sequence
of functions on a set X and we have a convergent series Mn of non-negative numbers
such that

|fn(x)| ≤Mn (x ∈ X)

then
∑
n fn converges uniformly on X. The proof has been given (a few times)

in class. What I omitted to mention is that this is called the Weierstrass M-test.
The argument is as follows. First, by the dominated convergence theorem for the
counting measure on the non-negative integers,

∑
n fn < ∞. Next, given ε > 0,

there exists N ∈ N such that
∑
n>N Mn < ε. It follows that∥∥∥ ∞∑

n=0

fn −
m∑
n=0

fn

∥∥∥
∞
≤
∥∥∥ ∑
n>m

fn

∥∥∥
∞

≤
∑
n>m

‖fn‖∞

≤
∑
n>m

Mn

≤
∑
n>N

Mn

< ε



(m ≥ N)

giving the required uniform convergence.

2. Two well-known theorems

2.1. Liouville’s Theorem. The following is called Liouville’s Theorem.

Theorem 2.1.1. An entire bounded function is constant.
1



Proof. Let f(z) be entire and bounded, say |f(z)| ≤ M for all z ∈ C where M
is a finite constant. Let a ∈ C and let R be any positive number. The Cauchy
estimates on the disc B(a, R) gives us

|f ′(a)| ≤ M

R
.

Now let R→∞ to conclude that f ′(a) = 0. Thus f is a constant. �

Remark 2.1.2. An alternate proof is obtained by noting that |f (n)(0)| ≤ n!M/Rn

for all n ≥ 0. If n ≥ 1, one sees that n!M/Rn → 0 as n→∞, whence f (n)(0) = 0
for n ≥ 1. The usual Taylor’s series expansion around 0, which is valid on all of C
since f is entire, gives us the result.

2.2. Riemann’s Removable Singularities Theorem. The following is usually
attributed to Riemann.

Theorem 2.2.1. Suppose Ω is a region, a ∈ Ω a point and f : Ω r {a} → C an
analytic function such that (z − a)f(z) → 0 as z → a. Then f can be extended to
an analytic function on all of Ω.

Proof. Let B be an open disc containing a such that B ⊂ Ω. Let C = ∂B be the
bounding circle oriented in the usual way. From Problem 5 of HW 1, or equivalently
from Theorem 1.1 of Lecture 2, we see that

(2.2.1.1) g(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ

defines an analytic function on B. We claim that g extends f . In fact Cauchy’s
integral formula (if applicable) shows that g(z) = f(z) if z 6= a. To see Cauchy’s
integral formula applies we offer the following standard (and by now familiar) ar-
gument. Fix z ∈ B r {a} and define h : B r {a, z} → C by

h(w) =


f(w)− f(z)

w − z
if w ∈ {a, z}

f ′(z) if w = z

Then one checks easily that (w − b)h(w) → 0 as w → b for b ∈ {a, z}. Morever h
is analytic on B r {a, z} → C. Thus by Cauchy’s theorem

∫
C
h(ζ)dζ = 0, whence

we see that the right side of (2.2.1.1) yields f(z) for z 6= a. �

3. Morera’s Theorem

3.1. We have shown that if f(z) is analytic on an open set Ω in C then f(z) is
infinitely differentiable, for f(z) has a power series expansion around every point in
Ω. As function of two real variables, such an f is C∞. It is clear, from the results
we have proven so far that we have the following.

Theorem 3.1.1. Let f be a complex-valued function on a region Ω. The following
are equivalent:

(a) f is analytic.
(b) f is C1 and analytic.
(c) f = u + iv, where u, v are real-valued C1 functions satisfying the Cauchy-

Riemann equations.
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Another important theorem is the following:

Theorem 3.1.2 (Morera’s Theorem). Suppose f is a continuous C-valued function
on a region Ω such that ∫

γ

f(z)dz = 0

for every closed path γ in Ω. Then f is analytic.

Proof. An f satisfying the hypotheses must have a primitive F on Ω. Since F is
analytic, so is its derivative f , for analytic functions are infinitely differentiable. �

Corollary 3.1.3. Suppose {fn} is a sequence of analytic functions on Ω converging
uniformly on compact subsets to a function f . Then f is analytic.

Proof. If γ : [a, b] → Ω is a path and , then as γ∗ is compact, fn → f uniformly
on γ∗ as n→∞, or what is the same thing, fn ◦γ → f ◦γ converges uniformly on

[a, b]. We therefore have, with L =
∫ b
a
|γ′|dt (L = the length of the γ),∣∣∣∣∣

∫
γ

(fn(z)− f(z)dz

∣∣∣∣∣ ≤
∫ b

a

‖fn ◦γ − f ◦γ‖∞|γ′(t)|dt

≤ ‖fn ◦γ − f ◦γ‖∞L
→ 0,

as n→∞. In particular

(∗)
∫
γ

f(z)dz = lim
n→∞

∫
γ

fn(z)dz.

Let B be an open ball in Ω. From Cauchy’s theorem and (∗) we conclude that∫
γ
f(z)dz = 0 for every closed path γ in B. By Morera’s Theorem it follows that f

is analytic on B. Since analyticity is a local property, and such open balls B cover
Ω, we are done. �

Remark 3.1.4. Sometimes the term Morera’s theorem is used for the statement
with the same conclusion as our Morera’s theorem but with the weaker hypothesis
that

∫
γ
f(z)dz = 0 for every triangle γ in Ω. Note that a weaker hypothesis makes

for a stronger statement if the conclusion is the same, for you are getting away
with less. But in this case, the strengthening is mild. Indeed, the integrals of
f over rectangles are zero (every rectangle can be broken up into two triangles
via a diagonal), and then a familiar argument shows that locally primitives exist,
and that is enough to conclude that f is analytic. We should point out that the
converse is also true, namely, if f(z) is analytic then its integral over a triangle in
its domain of definition is zero. The proof is the same (dividing triangles rather
than rectangles) as Goursat’s proof we gave for Cauchy’s theorem over rectangles.
So often the statement f(z) is analytic if and only if its integral over every triangle
in its domain of definition is zero is referred to as the Goursat-Morera theorem.
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