LECTURE 4

Date of Lecture: January 12, 2017
As usual, this is only a summary. Not all proofs given in class are here.

1. Cauchy's theorem in a Disc

Theorem 1.1. Let $B=B(a, r)$ be a disc of radius r centered at $a \in \mathbf{C}$. Let B^{\prime} be the region obtained from B by deleting a finite subset (possibly empty) S of B. If $f(z)$ is analytic on B^{\prime} and $\lim _{z \rightarrow \zeta}(z-\zeta) f(z)=0$ for every $\zeta \in S$ then

$$
\int_{\gamma} f(z) d z=0
$$

for every closed path γ in B^{\prime}.
Proof. Pick a base point z_{0} in B^{\prime}. For any $z \in B^{\prime}$ we can find a path σ_{z} in B^{\prime} starting at z_{\circ}, consisting of segments which are either horizontal or vertical line segments, and ending at z. One checks easily that from Cauchy's theorem for a rectangle that

$$
F(z)=\int_{\sigma_{z}} f(w) d w
$$

does not depend upon σ_{z}. The shape of B (that it is a disc) plays a crucial role here. Moreover, we can arrange matters so that the last segment of σ_{z} is either vertical or horizontal. Picking the last segment to be horizontal, we get by the fundamental theorem of Calculus (for real variables) gives $(\partial F / \partial x)(z)=f(z)$. On the other hand, picking the last segment to be vertical we get (again by the fundamental theorem of calculus) that $(\partial F / \partial y)(z)=i f(z)$. Thus $(\partial F / \partial x)(z)=-i(\partial F / \partial x)(z)$. This means F is analytic and $F^{\prime}(z)=(\partial F / \partial x)(z)=f(z)$. The details are similar to those given in the proof of Proposition 3.1.1 in Lecture 2.

2. Cauchy's Integral Formula and Power Series

Let r be a positive real number, a a point in \mathbf{C}, and let $B=B(a, r), \bar{B}$, the closure of B in \mathbf{C}, i.e., the closed disc of radius r around a, and let C be the circle $\{|z-a|=a\}$. As always, \int_{C} will mean integrating along the positive (counterclockwise) direction of C.
2.1. Basic Computation. The following formula is basic to complex analysis:

$$
\begin{equation*}
\int_{C} \frac{d z}{z-a}=2 \pi i \tag{2.1.1}
\end{equation*}
$$

For the proof, note that without loss of generality we may assume $a=0$. Now use the parameterisation $\theta \mapsto z(\theta)=r(\cos \theta+i \sin \theta)$ of the bounding circle C, as the parameter θ varies over $[0,2 \pi]$. One checks easily that $z^{\prime}(\theta)=i z(\theta)$ whence $\int_{0}^{2 \pi} z^{\prime}(\theta) d \theta / z(\theta)=i \int_{0}^{2 \pi} d \theta=2 \pi i$.

From Theorem 1.1 of Lecture 2, or from Problem 5 of HW-1, we see that

$$
g(w)=\int_{C} \frac{d z}{z-w}
$$

is an analytic function on $U=\mathbf{C} \backslash C$, and the derivative of g on U is

$$
g^{\prime}(w)=-\int_{C} \frac{d w}{(z-w)^{2}}
$$

Now, for fixed z, the expression $(z-w)^{-2}$ regarded as a function of w has a primitive on U. Indeed

$$
\frac{1}{(z-w)^{2}}=\frac{d}{d w}\left[\frac{1}{z-w}\right]
$$

Thus $g^{\prime}=0$ on U. It follows that g is constant on the connected components determined by C (i.e., the connected components of $\mathbf{C} \backslash C$). There are two components, one of which is B. Now by (2.1.1), $g(a)=2 \pi i$. Hence we get

$$
\begin{equation*}
\int_{C} \frac{d z}{z-w}=2 \pi i \quad(w \in B) \tag{2.1.2}
\end{equation*}
$$

2.2. The integral formula for a disc. The following theorem is critical for deducing the local properties of analytic functions.

Theorem 2.2.1. Let fbe analytic on closed disc \bar{B}. Then

$$
f(w)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-w} d \zeta \quad(w \in B)
$$

Proof. Fix $w \in B$. For $z \neq w$ in the domain of f, define $g(z)$ be the formula

$$
g(z)=\frac{f(z)-f(w)}{z-w}
$$

Then $g(z)$ is analytic in $\bar{B} \backslash\{w\}$. Moreover, $\lim _{z \rightarrow w}(z-w) g(z)=0$. Thus Cauchy's theorem on the disc applies to g and we have $\int_{C} g(\zeta) d \zeta=0$. It follows that

$$
\int_{C} \frac{f(\zeta) d \zeta}{\zeta-w}=\int_{C} \frac{f(w) d \zeta}{\zeta-w}=f(w)(2 \pi i)
$$

where we have used (2.1.2) for the last equality.
2.3. Power Series. Let $e(\theta)$ be the map $\theta \mapsto \cos \theta+i \sin \theta, 0 \leq \theta \leq 2 \pi$. Then $\varphi:=a+r e$ is a paramaterisation of C which respects its orientation. Now suppose, as in Theorem 2.2.1, f is analytic on \bar{B}. The map f along with the parameterisation φ induces a complex measure μ on $[0,2 \pi]$ given by $E \mapsto \int_{E}(f \circ \varphi) \varphi^{\prime} d m$ where m is the Lebesgue measure and E a Lebesgue measurable set. By Theorem 1.1 of Lecture 2 (with $X=[0,2 \pi], \mathscr{F}$ the Lebesgue σ-algebra, Ω the domain of $f(z)$, and φ and μ as defined above) we see that if $w \in B$ then f has a power-series expansion in any disc contained in B centred at w :

$$
f(z)=\sum_{n=0}^{\infty} c_{n}(z-w)^{n}
$$

where

$$
c_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta) d \zeta}{(\zeta-w)^{n+1}}, \quad(n \geq 0)
$$

Moreover by Corollary 2.1.2 of Lecture 1 we have $c_{n}=f^{(n)}(w) / n$!. Thus we get the following power series expansion

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(w)}{n!}(z-w)^{n} \tag{2.3.1}
\end{equation*}
$$

for every w in the domain of f. The expansion is valid in any disc centred at w contained in the domain of f as a little thought shows. Note that the formula for c_{n} above gives us

$$
\begin{equation*}
f^{(n)}(w)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta) d \zeta}{(\zeta-w)^{n+1}}, \quad(n \geq 0) \tag{2.3.2}
\end{equation*}
$$

a formula that can also be deduced from problem 5 of HW-1.
2.4. Cauchy estimates. The following gives an estimate for growth of derivatives.

Proposition 2.4.1. Suppose f is analytic on \bar{B} and $\sup _{z \in C}|f(z)| \leq M<\infty$. Then

$$
\left|f^{(n)}(a)\right| \leq \frac{n!M}{r^{n}} \quad(n \geq 0)
$$

Proof. We have by (2.3.2)

$$
f^{(n)}(a)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{(z-a)^{n+1}}
$$

for each $n \geq 0$. It follows that for each $n \geq 0$ we have

$$
\begin{aligned}
\left|f^{(n)}(a)\right| & \leq \frac{n!}{2 \pi} \int_{0}^{2 p i} \frac{M|r e(\theta)|}{|r e(\theta)|^{n+1}} d \theta \\
& =\frac{n!}{2 \pi} \frac{M r}{r^{n+1}} 2 \pi r \\
& =\frac{n!M}{r^{n}}
\end{aligned}
$$

References

[A] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New-York, 1979.

