
LECTURE 4

Date of Lecture: January 12, 2017

As usual, this is only a summary. Not all proofs given in class are here.

1. Cauchy’s theorem in a Disc

Theorem 1.1. Let B = B(a, r) be a disc of radius r centered at a ∈ C. Let B′ be
the region obtained from B by deleting a finite subset (possibly empty) S of B. If
f(z) is analytic on B′ and limz→ζ(z − ζ)f(z) = 0 for every ζ ∈ S then∫

γ

f(z)dz = 0

for every closed path γ in B′.

Proof. Pick a base point z◦ in B′. For any z ∈ B′ we can find a path σz in B′

starting at z◦ , consisting of segments which are either horizontal or vertical line
segments, and ending at z. One checks easily that from Cauchy’s theorem for a
rectangle that

F (z) =

∫
σz

f(w)dw

does not depend upon σz. The shape of B (that it is a disc) plays a crucial role here.
Moreover, we can arrange matters so that the last segment of σz is either vertical
or horizontal. Picking the last segment to be horizontal, we get by the fundamental
theorem of Calculus (for real variables) gives (∂F/∂x)(z) = f(z). On the other
hand, picking the last segment to be vertical we get (again by the fundamental
theorem of calculus) that (∂F/∂y)(z) = if(z). Thus (∂F/∂x)(z) = −i(∂F/∂x)(z).
This means F is analytic and F ′(z) = (∂F/∂x)(z) = f(z). The details are similar
to those given in the proof of Proposition 3.1.1 in Lecture 2. �

2. Cauchy’s Integral Formula and Power Series

Let r be a positive real number, a a point in C, and let B = B(a, r), B, the
closure of B in C, i.e., the closed disc of radius r around a, and let C be the circle
{|z − a| = a}. As always,

∫
C

will mean integrating along the positive (counter-
clockwise) direction of C.

2.1. Basic Computation. The following formula is basic to complex analysis:

(2.1.1)

∫
C

dz

z − a
= 2πi

.
For the proof, note that without loss of generality we may assume a = 0. Now

use the parameterisation θ 7→ z(θ) = r(cos θ + i sin θ) of the bounding circle C, as
the parameter θ varies over [0, 2π]. One checks easily that z′(θ) = iz(θ) whence∫ 2π

0
z′(θ)dθ/z(θ) = i

∫ 2π

0
dθ = 2πi.
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From Theorem 1.1 of Lecture 2, or from Problem 5 of HW-1, we see that

g(w) =

∫
C

dz

z − w
is an analytic function on U = Cr C, and the derivative of g on U is

g′(w) = −
∫
C

dw

(z − w)2
.

Now, for fixed z, the expression (z−w)−2 regarded as a function of w has a primitive
on U . Indeed

1

(z − w)2
=

d

dw

[
1

z − w

]
.

Thus g′ = 0 on U . It follows that g is constant on the connected components deter-
mined by C (i.e., the connected components of CrC). There are two components,
one of which is B. Now by (2.1.1), g(a) = 2πi. Hence we get

(2.1.2)

∫
C

dz

z − w
= 2πi (w ∈ B)

2.2. The integral formula for a disc. The following theorem is critical for de-
ducing the local properties of analytic functions.

Theorem 2.2.1. Let fbe analytic on closed disc B. Then

f(w) =
1

2πi

∫
C

f(ζ)

ζ − w
dζ (w ∈ B).

Proof. Fix w ∈ B. For z 6= w in the domain of f , define g(z) be the formula

g(z) =
f(z)− f(w)

z − w
.

Then g(z) is analytic in Br{w}. Moreover, limz→w(z−w)g(z) = 0. Thus Cauchy’s
theorem on the disc applies to g and we have

∫
C
g(ζ)dζ = 0. It follows that∫

C

f(ζ)dζ

ζ − w
=

∫
C

f(w)dζ

ζ − w
= f(w)(2πi)

where we have used (2.1.2) for the last equality. �

2.3. Power Series. Let e(θ) be the map θ 7→ cos θ + i sin θ, 0 ≤ θ ≤ 2π. Then
ϕ := a+ re is a paramaterisation of C which respects its orientation. Now suppose,
as in Theorem 2.2.1, f is analytic on B. The map f along with the parameterisation
ϕ induces a complex measure µ on [0, 2π] given by E 7→

∫
E

(f ◦ϕ)ϕ′dm where m
is the Lebesgue measure and E a Lebesgue measurable set. By Theorem 1.1 of
Lecture 2 (with X = [0, 2π], F the Lebesgue σ-algebra, Ω the domain of f(z), and
ϕ and µ as defined above) we see that if w ∈ B then f has a power-series expansion
in any disc contained in B centred at w:

f(z) =

∞∑
n=0

cn(z − w)n

where

cn =
1

2πi

∫
C

f(ζ)dζ

(ζ − w)n+1
, (n ≥ 0).
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Moreover by Corollary 2.1.2 of Lecture 1 we have cn = f (n)(w)/n!. Thus we get the
following power series expansion

(2.3.1) f(z) =

∞∑
n=0

f (n)(w)

n!
(z − w)n

for every w in the domain of f . The expansion is valid in any disc centred at w
contained in the domain of f as a little thought shows. Note that the formula for
cn above gives us

(2.3.2) f (n)(w) =
n!

2πi

∫
C

f(ζ)dζ

(ζ − w)n+1
, (n ≥ 0)

a formula that can also be deduced from problem 5 of HW-1.

2.4. Cauchy estimates. The following gives an estimate for growth of derivatives.

Proposition 2.4.1. Suppose f is analytic on B and supz∈C |f(z)| ≤ M < ∞.
Then

|f (n)(a)| ≤ n!M

rn
(n ≥ 0).

Proof. We have by (2.3.2)

f (n)(a) =
n!

2πi

∫
C

f(z)dz

(z − a)n+1

for each n ≥ 0. It follows that for each n ≥ 0 we have

|f (n)(a)| ≤ n!

2π

∫ 2pi

0

M |re(θ)|
|re(θ)|n+1

dθ

=
n!

2π

Mr

rn+1
2πr

=
n!M

rn
.

�
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