
LECTURE 3

Date of Lecture: January 11, 2017

As usual, this is only a summary. Not all proofs given in class are here.

1. Primitives

The following two conditions on a continuous function f on a region Ω are
trivially equivalent:

• For a [ath γ : [a, b] → Ω in Ω, the integral
∫
γ
f(z)dz depends only on the

end-points γ(a) and γ(b) of γ and not on γ.
• The integral

∫
γ
f(z)dz = 0 for every closed path γ in Ω.

If f satisfies the above we say f has path-independent integrals, or sometimes,
the differential f(z)dz has path independent integrals.

Last lecture we proved that if f as above has path-independent integrals then f
has a primitive on Ω. The converse is also true. Here is the complete statement

Theorem 1.1. Let Ω be a region in C. A complex-valued continuous function on
Ω has primitive in Ω if and only if f has path-independent integrals.

Proof. We have already proven the “if” part in the last lecture. We now prove the
“only if part”. Suppose f is continuous on Ω and has a primitive F in Ω. Then F
satisfies the Cauchy-Riemann equations and hence

f =
∂F

∂x
= −i∂F

∂y
.

It follows that

f(z)dz =
∂F

∂x
(dx+ idy)

=
∂F

∂x
dx+ i

∂F

∂x
dy

=
∂F

∂x
dx+

∂F

∂y
dy (Cauchy-Riemann)

= dF.

It follows that if γ : [a, b]→ Ω is a path, with p = γ(a) and q = γ(b), then∫
γ

f(z)dz =

∫ b

a

γ∗(f(z)dz) =

∫ b

a

γ∗(dF )

= F (γ(b))− F (γ(a))

= F (q)− F (p)

as required. For a differential ω on Ω, the differential γ∗ω makes sense only on
[a, b] r {t0, . . . , tn} where the ti’s are the points of partition of [a, b] such that on
[ti−1, ti] the map γ is differentiable with continuous derivative. Be that as it may,
one can still apply Stokes’ Theorem to γ∗i ω (γi = γ|(ti−1,ti)) and if these differentials
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extend to the manifold with boundary [ti−1, ti] then we can add to make sense of∫ b
a
γ∗ω. In our case these hypotheses are satisfied.
Another way is to use the parameterisation t 7→ γ(t) = x(t) + iy(t), where

x(t) and y(t) are the real and imaginary parts of γ(t). By the chain rule for the
composition g = F ◦γ, we have (on each subinterval [ti−1, ti])

g′(t) = Fx(γ(t))x′(t) + Fy(γ(t))y′(t)

= f(γ(t))x′(t) + if(γ(t))y′(t)

= f(γ(t))γ′(t).

It follows that
∫
γ
f(z)dz =

∫ b
a
f(γ(t))γ′(t)dt =

∫ b
a
g′(t)dt = g(b) − g(a) giving the

result. �

2. Cauchy’s Theorem

2.1. Cauchy’s theorem for a rectangle. Let R be a closed bounded rectangle
in C with verticles a+ ic, b+ ic, a+ id, b+ id, with a < b and c < d. Let R◦ be the
interior of R an ∂R the boundary of R oriented in the usual way (with R◦ falling
to the left when one travels along the path, which we do at speed s = 1).

Theorem 2.1.1. Let f be analytic on R. Then∫
∂R

f(z)dz = 0.

The result continues to hold even if f is only defined and analytic on Ω r S where
S = {ζ1, . . . , ζm} is a finite subset of R◦ , provided (z − ζi)f(z) → 0 as z → ζi for
i = 1, . . . ,m.

Proof. Let us first prove the theorem when f is analytic on R, i.e., when S = ∅.
For any sub-rectangle of Q of R (with Q = R a possibility), with Q closed and sides
parallel to the real and imaginary axes, define

η(Q) =

∫
∂Q

f(z)dz.

Divide R into four sub-rectangles R(1), R(2), R(3), and R(4) as follows (the picture
is the one in [A, Fig.4-2, p.110]):
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If an edge is shared between two sub-rectangles then clearly the orientation of the
edge induced by one sub-recatngle is opposite to the orientation on the edge induced
by the other sub-rectangle. Hence

η(R) = η(R(1)) + η(R(2)) + η(R(3)) + η(R(4))

whence there is at least one R(i), call it R1, such that

|η(R1)| ≥ 1

4
|η(R)|.

One can repeat the process on R1, i.e., subdivide R1 into four sub-rectangles in
the manner the sub-division was done for R etc., to arrive at a sub-rectangle R2

such that |η(R2)| ≥ (1/4)|η(R1)|. Continuing the process we get a family of sub-
rectangles {Rn}, with Rn+1 ⊂ Rn such that

4−n|η(R)| ≤ |η(Rn)| (n ≥ 1).(2.1.1.1)

Let d be the length of a diagonal of R and L its perimeter, and let dn and Ln be
the corresponding quantities for Rn. We then have

dn = 2−nd and Ln = 2−nL.

Since R is a complete metric space and {Rn} is a nested family of closed subsets
such that diam(Rn) = dn = 2−nd −→ 0 and n −→ ∞, we have, by the nested sets
theorem there is unique point z∗ in the intersection of the Rn, i.e.,

∞⋂
n=1

Rn = {z∗}.

Now suppose ε > 0 is given. There exists a δ > 0 such that B(z∗, δ) is contained
in the domain of f and ∣∣∣∣∣f(z)− f(z∗)

z − z∗
− f ′(z∗)

∣∣∣∣∣ < ε (0 < |z − z∗| < δ).

Thus

(2.1.1.2)
∣∣∣f(z)− f(z∗)− f ′(z∗)(z − z∗)

∣∣∣ < ε|z − z∗| (|z − z∗| < δ).

We can find N ≥ 1 such that Ln = 2−nL ≤ δ/2 for n ≥ N . It follows that
Rn ⊂ B(z∗, δ) for n ≥ N . Moroever the constant f(z∗) and the analytic function
f ′(z∗)(z − z∗) have primitives f(z∗)z and f ′(z∗)(z − z∗)2/2 and hence∫

∂Rn

f(z)dz =

∫
∂Rn

(
f(z)− f(z∗)− f ′(z∗)(z − z∗)

)
.

For n ≥ N it then follows from (2.1.1.2) that

(2.1.1.3)

|η(Rn)| =
∣∣∣ ∫
∂Rn

f(z)dz
∣∣∣ <ε∫

∂Rn

|z − z∗||dz|

≤ εdn
∫
∂Rn

|dz|

= εdnLn

= ε4−ndL

From (2.1.1.1) and (2.1.1.3) we conclude that |η(R)| < εdL, and since ε was an
arbitrary positive number, η(R) = 0.
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Now suppose S 6= ∅. We can find a finite system of lines parallel to the axes
which divide R into sub-rectangles Qj (j varying over some finite index set) such
that no ζi lies in the boundary of any Qj and each Qj contains at most one ζi in

its interior. For 1 ≤ i ≤ m let Q(i) be the unique sub-rectangle containing ζi in
its interior. Then it is clear from what we proved above that η(R) =

∑m
i=1 η(Q(i)),

for η(Qj) = 0 for any Qj not containing any ζi. Thus without loss of generality we
may assume m = 1 and set ζ = ζ1.

Suppose ε > 0 is given. We can find δ > 0 such that B(ζ, δ) ⊂ R and such that
|(z − ζ)f(z)| < ε whenever 0 < |z − z∗| < δ. Let Q be a square with side ` centred

at ζ such that ` < δ/
√

2. Then for z ∈ ∂Q, |z − ζ| ≤
√

2`/2 < δ/2. It follows that
Q ⊂ B(zeta, δ). Moroever,

|z − ζ| ≥ `

2
(z ∈ ∂Q).

giving

(2.1.1.4) |f(z)| < ε

|z − ζ|
≤ 2

ε

`
(z ∈ ∂Q).

Subdivide R as follows into nine rectangles, with Q the rectangle containing ζ
(picture taken from [A, Fig.4-3, p.112]).

Clearly, from what we proved earlier for functions analytic on closed rectangles,
η(P ) = 0 for any sub-rectangle P 6= Q in the above decomposition. It follows that

η(R) = η(Q).

From (2.1.1.4) we get

|η(Q)| <
∫
∂Q

2
ε

`
|dz| = 2ε

4`

`
= 8ε.

Thus |η(R)| = |η(Q)| < 8ε, whence η(R) = 0. �

Remark 2.1.2. This proof is due to the French mathematician Édouard Goursat,
and it appeared in his book on analysis in the first decade of the 20th century. Before
Goursat, it was standard to assume that an analytic function is C1 in addition
to being differentiable. This proof shows (as we will see in Lecture 4) that the
extra assumption is un-necessary, for an analytic function (as we have defined it)
is infinitely differentiable and hence certainly C1 (in fact C∞).
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