
LECTURE 25

Date of Lecture: April 12, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

The unit circle will be denoted T instead of C. As usual ∆ will denote the open
unit disc. The Riemann sphere will be denoted P1.

1. Meromorphic functions revisited

1.1. Generalities. Please refer to Problem 4(b) of HW 5 for this discussion. First,

note that the domain of the meromorphic function α(z) =
1

z
can be extended to

P1 in a continuous way by setting α(∞) = 0. Thus we have a homeomorphism

α : P1 −→∼ P1

which we continue to write as α(z) =
1

z
.

A meromorphic function f(z) on an open set U of C can be regarded as a
continuous map

f : U → P1

such that S = f−1(∞) is a discrete subset of U , with f |UrS holomorphic holo-
morphic. Note that f has poles at the isolated singularities, namely the points of
S.

If U is the complement of a compact set in C then U defines an open neighbour-

hood of ∞, i.e., Û := U ∪ {∞} is an open neighbourhood of ∞. Now V = α(Û)

is an open neighbourhood of 0 and we say f is meromorphic on Û if f ◦α is mero-
morphic on V r {∞}. We say f has a pole at ∞ if f ◦α has a pole at 0, and it has
a removable singularity at ∞ if f ◦α has a removable singularity at 0. In the latter

case, clearly f extends in a continuous manner to Û with f(∞) being defined as
the value of f ◦α at 0 after the removable singularity has in fact been removed.

Note that a non-constant meromorphic function must be an open map to P1.
This follows in a straightforward way from the above definitions and from the open
mapping theorem for holomorphic functions. For example, in a neighbourhood of
a pole of f in C, α ◦f is holomorphic, and hence open, and α is a homeomorphism.
If ∞ is a pole of f then one uses α ◦f ◦α to draw the same conclusion.

It therefore makes sense to talk about meromorphic functions on P1. From the
above discussion these are continuous functions

f : P1 → P1

such that S = f−1(∞) is finite (discrete subsets of the Riemann sphere are finite
since they are compact and discrete), and such that f is holomorphic on CrS and
has a removable singularity or a pole at ∞. According to Problem 4(b) of HW 5,
these are exactly the rational functions, i.e., functions of the form

f(z) =
p(z)

q(z)
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where p and q are polynomials, and q is a non-zero polynomial. After reducing
the situation where p(z) and q(z) have no common factors, the poles of f in C
occur where q vanishes. The value of f at ∞ is obtained by the standard tricks
for obtaining limits of rational functions at infinity. This yields the following. If
deg p > deg q then f has a pole of order deg p− deg q at ∞. If deg p < deg q, f has
a zero of order deg q−deg p at ∞. If deg p = deg q then f(∞) = a/b where a is the
leading coefficient of p and b is the leading coefficient of q.

1.2. Linear Fractional Transformations. We now examine meromorphic func-
tions

T : P→ P
which are one-to-one. Since non-constant meromorphic functions are open maps,
T is necessarily onto. There can only be one point w∗ ∈ P1 such that T (w∗) =∞.
Write T (z) = p(z)/q(z) where p and q are co-prime polynomials with q monic. If
w∗ ∈ C then q(z) = z−w∗ and (z−w∗)T (z) is entire with at most a simple pole at
∞. By Problem 3 of HW 3, T (z) is either a constant or a linear polynomial. Thus
T (z) = (az + b)/(z − w∗) where a = 0 only if (z − w∗)T (z) is constant. Since the
numerator and denominator are co-prime, we must have −aw∗ − b 6= 0. If, on the
other hand w∗ =∞, then T restricts to an entire function on C, with a simple pole
at ∞ and hence must be of the form T (z) = az + b with a 6= 0. In either case we
have

(1.2.1) T (z) =
az + b

cz + d

with a, b, c, d ∈ C satisfying ad− bc 6= 0.

Definition 1.2.2. A meromorphic function T : P1 → P1 is called a linear fractional
transformation or a Möbius transformation if it is of the form (1.2.1) with ad−bc 6=
0.

Linear fractional transformations are exactly the same as meromorphic functions
on P1 which are one-to-one.

Here are some observations to help you familiarise yourself with all this. In what
follows T is as in (1.2.1) with the accompanying condition ad− bc 6= 0.

1) Consider the two cases c = 0 and c 6= 0. If c = 0 then T (z) = αz + β with
α 6= 0. In other words T restricted to C is non-constant and entire. In this case
T (∞) = ∞. If on the other hand c 6= 0, then T has a simple pole at −d/c, T is
holomorphic on C r {−d/c} and T (∞) = a/c.

2) Since linear fractional transformations are the same as one-to-one meromor-
phic functions on P1, it follows that they form a group under composition. In
particular if T is a linear fractional transformation so is T−1.

3) Let A = ( a bc d ). Since ad − bc 6= 0, A is non-singular. We sometimes write
T = TA to show the dependence of T on A, and this notation is useful in what
follows. Let B be another invertible matrix. Then it is easy to check that

(1.2.3) TB ◦TA = TBA.

In other words, if GL(2, C) is the group of 2 × 2 non-singular matrices, we have
an action of on P1:

GL(2, C)× P1 → P1.

What (1.2.3) says is that A 7→ TA is a group homomorphism from GL(2, C) to the
group of linear fractional transformations. In particular T−1

A = TA−1 .
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Theorem 1.2.4. Let T be a linear fractional transformation. Suppose there exist
three distinct points z1, z2, and z3 on P1 such that T (zi) = zi for i = 1, 2, 3. Then
T is the identity map.

Proof. Let T = TA where A = ( a bc d ) is a non-singular matrix. First assume zi ∈ C
for all i. Then each of the zi’s satisfies the quadratic equation

cz2 + (d− a)z − b = 0.

Since there are three distinct solutions to this equation, all the coefficients must
vanish, i.e., a = d, and c = b = 0. Note that a = d is non-zero since A is invertible.
It follows that T (z) = z for all z ∈ C and hence for all z ∈ P1.

Now suppose one of the zi’s is equal to ∞, say z1. Then T (∞) = ∞, which
means T restricted to C is entire, i.e, T (z) = az + b and c = 0, d = 1. Note that
since detA = a in this case, therefore a 6= 0 (in any case, T is one-to-one and hence
cannot be a constant, and so a 6= 0). The equation T (z) = z translates to

(a− 1)z + b = 0

and this has two distinct solutions. It follows that the coefficients vanish, i.e., a = 1
and b = 0. Thus in this case too T (z) = z for all z. �

Example 1.2.5. Suppose T : P1 → P1 is a one-to-one meromorphic function. We
know that T must be a linear fractional transformation, say T = TA where A =
( a bc d ). How do we find A (which is unique up to scalar multiplication) based on
some qualitative knowledge of T? The strategy is as follows. Let r1 = T−1(0),
r2 = T−1(1), and r3 = T−1(∞). If Q is any linear fractional transformation such
that Q(r1) = 0, Q(r2) = 1 and Q(r3) = ∞, then by Theorem 1.2.4, Q = T . Here
are the cases to consider:

(a) Suppose all the ri lie in C (i.e., ∞ /∈ {r1, r2, r3}). Then then one sees
easily from the above discussion that

(1.2.6) T (z) =
r2 − r3

r2 − r1

z − r1

z − r3
.

If we set

R :=
r2 − r3

r2 − r1

then T = TA, A = ( a bc d ), with a = R, b = −Rr1, c = 1, and d = −r3. We
also have

(1.2.7) detA = R(r1 − r3) =
r2 − r3

r2 − r1
(r2 − r1).

Note that since the ri are distinct, the ratio on the right must be non-zero,
as expected.

(b) Suppose r1 = ∞. Then by checking the values of T at r1, r2 and r3 and
using Theorem 1.2.4 we see that

(1.2.8) T (z) =
r2 − r3

z − r3
.

Clearly

(1.2.9) detA = r3 − r2.
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(c) Suppose r2 =∞. Then

(1.2.10) T (z) =
z − r1

z − r3
,

and

(1.2.11) detA = r1 − r3.

(d) Finally, suppose r3 =∞. Then

(1.2.12) T (z) =
z − r1

r2 − r1
,

and

(1.2.13) detA = r2 − r1.

We point out that just as in case (a), in all the other cases detA can be seen to be
non-zero because the ri are distinct.

2. The unit disc and the upper half plane

2.1. Riemann Mapping at the boundary. We have seen that if Ω is a simply
connected bounded region with every boundary point simple, then every univalent
surjective map f : Ω → ∆ extends uniquely to a continuous one-to-one onto map
f : Ω → ∆. We will call a map f : Ω → ∆ a Riemann map if f |∂Ω takes values in
∆, and this restriction is univalent with f(Ω) = ∆.

Lemma 2.1.1. Let Ω be a bounded simply connected region whose boundary consists
of simple points, and suppose fi : Ω → ∆, i = 1, 2, are two Riemann maps such
that f1|∂Ω = f2|∂Ω. Then f1 = f2.

Proof. Let gi = f−1
i , i = 1, 2. It is enough to show g1 = g2. From the hypothesis,

g1|T = g2|T. Now gi|T is the radial limit function of gi, whence g1 = g2. �

2.2. Automorphisms of the unit disc. Suppose S : ∆ → ∆ is biholomorphic.
We have seen, using Schwarz’s Lemma that S must be of the form

(2.2.1) S(z) = eiθ
z + b

1− b̄z

with b ∈ ∆ and hence S extends to ∆ in a continuous bijective way. In partic-
ular S|T is homeomorphism from T to itself. Note that S is a linear fractional
transformation, and hence extends to an automorphism of P1.

We will show later the following: Let ζ1, ζ2, ζ3 be three distinct points on T
such that for i ∈ {1, 2, 3}, the arc from ζi to ζi+1 which does not contain ζi−1 (with
ζ4 = ζ1 and ζ0 = ζ3) is in the counter-clockwise direction. Then there exists an
automorphism S of ∆, which when extended to ∆, satisfies S(ζ1) = −i, S(ζ2) = i,
and S(ζ3) = 1. This can be deduced from (2.2.1), but is perhaps best seen by
transferring the problem to the upper half-plane h, and we indicate how below.
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2.3. Automorphisms of the upper half-plane. As before, let P1 be the Rie-
mann sphere, with C regarded as an open subset, namely C = P1 r{∞}. Consider
the Cayley transformation

φ : P1 → P1

given by the linear fractional transformation

(2.3.1) φ(z) = −iz + i

z − i
.

It is easy to see that φ takes points in C which lie “outside” T to the upper half-
plane h, and the points which lie “inside” T to the lower half-plane, h−. Indeed
φ(T) ⊂ R ∪ {∞} and hence φ(T) = R ∪ {∞} since φ is a homeomorphism. Thus
either φ(h) = h or φ(h) = h−. Since φ(0) = i, the assertion is proven.

Note that under φ, T maps homeomorphically onto R ∪ {∞}. Every automor-
phism of h is necessarily of the form

(2.3.2) T = φ ◦S ◦φ−1

where S is an automorphism of ∆, and we know that such an S must necessarily
take the form (2.2.1) and hence is a linear fractional transformation. It follows from
(2.3.2) that T is a linear fractional transformation.

Since T is a linear fractional transformation, it is defined on all of P1. From
our discussion on ∆, it is clear that T (R ∪ {∞}) = R ∪ {∞}. By Theorem 1.2.4
if 0, 1 and ∞ are fixed by T , then T must be the identity map. For this reason,
if we know the points r1, r2, r3 in R ∪ {∞} such that T (r1) = 0, T (r1) = 1, and
T (r3) =∞, then we know T . In fact the discussion in Example 1.2.5 applies with
the ri being restricted to the circle R ∪ {∞} in the Riemann sphere.

From the discussion in Example 1.2.5, since the ri ∈ R ∪ {∞}, we see that
T = TA where the entries in A are real, i.e., A ∈ GL(2,R) ⊂ GL(2, C).

It is worth asking, suppose we have a linear fractional transformation T = TA,
where A is in GL(2,R) (instead of allowing it range over the larger set A ∈
GL(2,C)), then when does it give an automorphism of h? We have

T (z) =
az + b

cz + d

with a, b, c, d ∈ R. It is clear that T (R ∪ {∞}) = R ∪ {∞}. Now the complement
of R ∪ {∞} in P1 is the union of two disjoint open sets, h and h−. Since T is a
(topological) automorphism of P1 we must have either T (h) = h or T (h) = h−. We
are interested in automorphisms of h and for these it is the first option we need.
To check that f(h) = h it is enough that f(i) ∈ h. From the expression for T (z)
above, it is clear that

f(i) =
ac+ bd+ i(ad− bc)

|d+ ic|2
.

It follows that f(i) ∈ h if and only if ad−bc > 0. We have thus proven the following

Theorem 2.3.3. The automorphism group of h, i.e., the group of univalent sur-
jective maps h → h with composition of maps as the group operation, is the group
of linear fractional transformations

T (z) =
az + b

cz + d

such that a, b, c, d ∈ R and ad− bc > 0.
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Let ri, i ∈ {1, 2, 3} be three distinct points in R ∪ {∞}. The ordered triple
of points (r1, r2, r3) defines an orientation on the circle R ∪ {∞}, namely the one
obtained from travelling first from r1 to r2 along the arc which does not contain
r3, then moving from r2 to r3 along the arc which does not contain r1 and finally
moving from r3 to r1 in the arc between r3 to r1 which does not contain r2. Two
observations are worth making:

• Every cyclic permutation of (r1, r2, r3) defines the same orientation of R∪
{∞}. Write [r1, r2, r3] for the equivalence class of triples which are cyclic
permutations of (r1, r2, r3).

• The orientation defined by σ0 = [0, 1, ∞] is such that h falls to left as one
moves along R in the directions defined by σ. We call the orientation given
by σ0 the positive orientation.

Theorem 2.3.4. Let r1, r2, r3 ∈ R ∪ {∞} be three distinct points, r = (r1, r2, r3)
and Tr the linear fractional transformation such that r1 7→ 0, r2 7→ 1, and r3 7→ ∞
as in Example 1.2.5. Then Tr defines an automorphism of h if and only if [r1, r2, r3]
defines the same orientation of R ∪ {∞} as σ0.

Proof. Let σ = [r1, r2, r3]. We remind the reader that Tr is a continuous (in fact
C∞) one-to-one map from P1 to itself. Topological considerations show that if
Tr(h) = h then the orientation defined by σ is the same as that of σ0. In other
words the “only if” part is true.

On the other hand if σ has the same orientation as σ0 then one has the following
cases.

(a) Suppose ri ∈ R for i = 1, 2, 3, then the only possibilities are (i) r1 < r2 < r3,
(ii) r2 < r3 < r1, (iii) r3 < r1 < r1. According to Theorem 2.3.3 and (1.2.7),
we have to check that

r2 − r3

r2 − r1
(r2 − r1) > 0.

This is easily seen to be true in each of the cases (i), (ii), and (iii).
(b) Suppose r1 = ∞. For σ to have positive orientation, the only possibility

is r2 < r3. According to Theorem 2.3.3 and (1.2.9) we have to check that
r3 − r2 > 0, which is clearly true in this case.

(c) Suppose r2 = ∞. Then σ has positive orientation if and only if r3 < r1.
From (1.2.11) and Theorem 2.3.3 we are done in this case too.

(d) Suppose r3 = ∞. Then σ has positive orientation if and only if r1 < r2.
We appeal to (1.2.13) and Theorem 2.3.3. The result follows.

�

Remark 2.3.5. Let Ω be a bounded simply-connected region with simple boundary
points, such that the boundary ∂Ω is a piecewise smooth curve. Note that by
Carathéodary’s extension of the Riemann Mapping Theorem, ∂Ω is homeomorphic
to T and by the Cayley transform, to R ∪ {∞}. Let α, β, γ be three distinct
boundary points of Ω such that when one moves from α to β along the boundary
segment which does not meet γ, and then from β to γ along the boundary segment
which does not meet α and finally from γ to α along the remaining boundary
segment, then Ω lies to the left. Under these hypotheses, if f : Ω→ h is a univalent
surjective map and f also denotes the continuous extension Ω→ h = h ∪R ∪ {∞}
then, [f(α), f(β), f(γ)] gives positive orientation to R ∪ {∞}. The assertions are
obvious, since conformal holomorphic maps are orientation preserving.
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3. Reflections

3.1. Reflection about a line. Let L be a line in the complex plane. Define the
reflection with respect to L to be the map

RL : C→ C

as the map z 7→ z∗ where z∗ is obtained by drawing a line through z perpendicular
to L and marking off z∗ on this perpendicular line at an equal distance from L as
z in a way that z 6= z∗ unless z ∈ L, in which case z = z∗. In terms of formulas, if
θ is the angle in [−π, π) that L makes with the positive real axis, and z0 is a fixed
point in L, then

z∗ = RL(z) = eiθe−iθ(z − z0) + z0 = e2iθ(z − z0).

The map RL can be extended to P1 by setting RL(∞) =∞. Thus

RL : P1 → P1.

3.2. Reflection about the unit circle. Let φ : P1 → P1 be the Cayley transform
(2.3.1). Define the reflection with respect to T to be the map

RT : P1 → P1

given by z 7→ z∗ where

z∗ = φ−1φ(z)

where the conjugate of ∞ is taken to be ∞. If z ∈ T , note that z∗ = z. Otherwise,
z∗ is inside T if z is outside T , and z∗ is outside T when z is inside T .

3.3. Reflection about an arbitrary circle. Let C be a circle of radius ρ, 0 <
ρ <∞ and with centre z0. Define the reflection with respect to C to be the map

RC : P1 → P1

given by

RC(z) = z0 + ρRT

(z − z0

ρ

)
.

Note once again that RC(z) = z if and only if z ∈ C. If z lies “outside” C, then
RC(z) lies inside C, and vice-versa.

3.4. The Schwarz Reflection Principle for line segments and circular arcs.
The following is straightforward:

Lemma 3.4.1. Let L be a line or a circular arc. Suppose Ω is a region in C such
that Ω ∩ L = ∅. Let f : Ω→ C be holomorphic. Then the function

g : RL(Ω)→ C

given by

g(z) = f(RL(z))

is holomorphic.

Definition 3.4.2 (Symmetric region). Let L be a line or a circle in C. A region
Ω is called symmetric with respect to L if Ω = RL(Ω).

Note that if L is a straight line or a circle, then C r L has two connected
components. If the components are U1 and U2 then RL(U1) = U2 and RL(U2) = U1.

The following is an obvious re-phrasing of the usual Schwarz Reflection Principle.
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Theorem 3.4.3 (The Schwarz Reflection Principle). Let Ω be a region in C which
is symmetric with respect to L, where L is a line or a circle. Let U1 and U2 be the
connected components of C r L, and Ω1 = Ω ∩ U1, Ω2 = Ω ∩ U2 and M = Ω ∩ L.
Suppose f : Ω1 → C is a holomorphic map such that if {zn} is a sequence in Ω1

converging to a point in M then limn→∞ Im(f(zn)) = 0. Then f extends to a
holomorphic function on Ω. The extended function satisfies the relation

f(z) = f(RL(z)) (z ∈ Ω).

In particular f is real-valued on M .

4. Picard’s Modular Function

4.1. Let Ω be the region in the upper half-plane h given by

Ω =

{
z ∈ h | 0 < Re (z) < 1,

∣∣∣∣∣z − 1

2

∣∣∣∣∣ > 1

2

}
.

The region is depicted below. The boundary of Ω consists of the vertical line
Re (z) = 0 on the left (the red vertical line), the line Re (z) = 1 on the right (the
blue vertical line), and the semi-circle |z − 1/2| = 1/2, Im (z) ≥ 0 at the bottom
(coloured purple).

In P1, the boundary would be all this along with the point ∞ which is the
intersection of the two vertical lines mentioned, in the Riemann sphere. Thus on
P1 the boundary of Ω is a triangle. This can be brought to the finite plane—in fact
to ∆—by the transformation

T (z) = φ−1(2z − 1)

where φ is the Cayley map (2.3.1). Note that

φ−1(z) = i
z − i
z + i

.

The boundary of Ω in P1 transforms to the boundary of T (Ω) which is a triangle with
vertices {−i, i, 1} with some edges being circular arcs. Indeed T (0) = φ−1(−1) =
−i, T (1) = φ−1(1) = 1, and T (∞) = φ−1(∞) = i. The transformed region is the
one depicted below.
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T (Ω) is the region bounded by the red line on the left and by the blue and purple
circular arcs. The colours correspond to the colours used on the boundary of Ω.
For the curious, the blue arc is part of the circle (x − 1)2 + (y − 1)2 = 1 and the
purple arc is part of the circle (x− 1)2 + (y + 1)2 = 1. It is a good exercise to see
that under T , the boundary of Ω in P1 does transform to what is depicted in the
picture. Carathéodary’s version of the Riemann Mapping Theorem applies to T (Ω)
and hence to Ω.

Translating the above reasoning to h, using the Cayley map φ, we see that if
S∗ : h→ h is a biholomorphism, it extends continuously to the boundary R ∪ {∞}
and if the extended map fixes 0, 1, and∞, it is the identity map (see Theorem 1.2.4).

By Remark 2.3.5 and Theorem 2.3.4 we therefore have a unique univalent sur-
jective map λ : Ω → h such that it extends uniquely to a continuous map on the
boundary taking 0 to 0, 1 to 1, and ∞ to ∞.

In what follows we use the term region to include boundaries – we will only
do it for this discussion. Consider the picture given below (taken from page 62 of
Osgood’s 1898 lectures [0]).

9



The interior of the region labelled (1) is Ω. That region can be reflected, via
reflections with respect to lines and circles, into three regions, namely the regions
labelled (2). Since λ is real on the boundary of Ω, Schwarz’s Reflection Principle
says that λ can be extended to each of the regions labelled 2, so that the union
of the regions labelled (1) and (2) together with their common boundaries allow
for the extension of λ. Note that when λ extends from (1) to the region on its
immediate right, the range of λ is C r (∞, 0]. Similarly when λ is reflected to the
only bounded region labelled (2), the extended function takes values in C r [0, 1],
and when we reflect on the left, the range is C r [1,∞). Overall, the range of λ
in the interior of the union of the regions labelled (1) and (2) is C r {0, 1}. We
can continue this process. Each of the regions labelled (2) have two circular arcs
or straight lines through which further refections can be effected, and this gives six
regions labelled (3). If one continues this process indefinitely, the interior of the
union of all possible reflections is the upper half-plane h, and we get a holomorphic
map, the Picard modular function,

(4.1.1) λ : h→ C r {0, 1}.
It is easy to see that this is a covering map. Indeed, if z0 ∈ h then pick an open
ball B0 with z0 as centre lying wholly in h, and we have a unique open set U0 in
Ω mapping to it under λ biholomorphically. The inverse image of B0 is the union
of all the even reflections of U0, and these are clearly pairwise disjoint, and each of
them maps biholomorphically on to B0. Similar considerations take care of matters
when z0 ∈ h−. If z0 lies on the boundary, say on (1, ∞), pick the point w0 on the
line Re (z) = 1 which corresponds to it under λ. Pick a ball B0 with centre z0

such that B0 ∩R ⊂ (1, ∞). Then we have an open neighbourhood U0 of w0 lying
entirely in two regions adjoining w0, which maps biholomorphically on to B0. Once
again all even reflections of U0 form the inverse image of B0 under λ and these are
clearly disjoint and biholomorphic, under λ, to B0. The same considerations work
z0 ∈ (0, 1) and in (∞, 0). We thus have (since h is obviously simply connected)

Theorem 4.1.2. The Picard modular function λ : h→ Cr {0, 1} given in (4.1.1)
is a holomorphic covering map. The map λ is the universal cover of C r {0, 1}

This gives us

Theorem 4.1.3 (Picard’s Little Theorem). Let a and b be two distinct points of
C and suppose f is an entire function which does not take values in {a, b}. Then
f is a constant.

Proof. By replacing f(z) by
f(z)− a
b− a

if necessary, we assume without loss of gen-

erality that {a, b} = {0, 1}. Thus

f : C→ C r {0, 1}.
Let z0 ∈ C and pick ζ0 ∈ h such that f(z0) = λ(ζ0). Since f is continuous and λ is
the universal covering space of C r {0, 1}, there exists a unique continuous map

f̃ : C→ h

such that f̃(z0) = ζ0 and λ ◦ f̃ = f . It is easy to see that f̃ must be holomorphic.
If an entire function takes values in h it must be a constant by Lousivlle’s theorem,
since h is biholomorphic to ∆ by (say) the Cayley transformation (2.3.1). This
means f is constant. �
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