LECTURE 24

Date of Lecture: April 10, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

The unit circle will be denoted T instead of C. As usual A will denote the open
unit disc. As before, for 1 < p < oo we identify LP([—n, 7]) with LP(T), where
the o-algebras in play are the Borel o-algebras and the measures, the normalised
Lebesgue on [—m, 7] (the usual Lebesgue measure divided by 27) and the Haar
measure on T. The identification is the standard one.

1. Boundary values of the Riemann mapping

This is a rich topic. We will confine ourselves to one aspect, namely Caratheodary’s
beautiful theorem that if f: Q@ — A is a univalent surjective map (note this forces 2
to be simply connected) then f can be extended as a continuous function to simple
points of the boundary. This theorem makes it easier to prove Picard’s theorem,but
is clearly very interesting in its own right.

1.1. Simple boundary points. Let €2 be a simply connected region. Recall that
the boundary of Q is 9Q = QN (C \ Q). Points of O are called boundary points.
Recall that a curve in € is a continuous map ~: [a, b] — Q (see beginning of § 2 of
Lecture 2).

Definition 1.1.1 (Simple boundary point). A boundary point S of Q is called
a simple boundary point if it has the following property. Given a sequence {z,}
of points in  such that 2z, — (8 as n — oo, there exists a curve v: [0,1] — Q
such that y(t) € Q for t < 1, 7(1) = B and there exist a sequence {t,} with
0<ty <+ <ty <tpyr <...such that y(¢,) = 2z, for every n € N.

Examples 1.1.2. Here are two examples:

1) Let © = AN [0,1). Then f = 1/2 is a boundary point of . It is easy
to see that 8 cannot be a simple boundary. Indeed, consider the sequence z, =
1/24(—=1)"(1/n)i. Then z, — B. It is not possible to connect the 2/ s by a contour
v:[0,1] — Q in such a way that v(t) € Q for t < 1 and (1) = 8 = 1/2. In
fact, as is easy to see, every 8 in the open interval (0,1) provides an example of a
non-simple boundary point of €.

2) Suppose a boundary point 8 is such that B(8,r) N § is connected for all
sufficiently small radii 7. Then a little thought shows that § must be a simple
boundary point of Q2. Indeed, we have a subsequence {z,, } of z, such that |8—z,,| <
1/k for all m > ny. For sufficiently large k, say k > ko, our hypothesis implies that
B(B, 1/k) N Q is connected. Connect z,, to 2,41 by any curve in Q for m < k.
For m € {ng,...,ngy1 — 1}, with k > ko, connect z,, to z,4+1 by a curve in
B(B, 1/k) N Q (which is connected). Take the amalgamation of all the curves, to
get a map v: [0,1) — € such that lim; 1 y(t) = 8. Extend + to [0, 1] by setting
v(1) =B
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Theorem 1.1.3 (Carathéodary). Let f: Q@ — A be a univalent surjective map
from a bounded simply connected region §2.

(a) If B is a simple boundary point of Q then f can be extended as a continuous
function to QU{B}. If f is so extended, then |f(B)| = 1.
(b) If B1 and Bs are two distinct simple boundary points of Q and f is extended

to QU{B1, B} as in (a), then f(B1) # f(B2).

Proof. Let g: A — § be the map inverse to f. Since €2 is bounded ¢ is bounded.

Suppose f cannot be extended to Q U {8}. Then there exists a sequence {z,}
in Q converging to 3, two distinct points w; and wq in A, such that f(ze,) — w;
and f(zop41) = wo as n — oo.

Since 3 is a simple boundary point, we can find a curve v: [0,1] — Q, and a
sequence {t,}, 0 <t; <--- <t, <...such that v(t) € Qfor 0 <t < 1, y(1) = G,
and such that v(t,) = z,.

Let I'(t) = f(y(t)) for t € [0,1). Then I is continuous on the half-open interval
[0,1). For 0 < r < 1 let K, = g(B(0,r). Then K, is compact in Q. Now,
lim;—,; y(¢t) = 8 and hence for a fixed r, there exists t* (depending upon r), 0 <
t* < 1, such that y(t) ¢ K, for t* <t < 1. This means |T'(¢)| = |f(v(¢))] > r for
t* <t < 1. It follows that lim; ;1 |T'(¢)] = 1. In particular |wy| = |wa| = 1, i.e.,
wg € T for k=1,2.

Since w; and wsy are distinct points of T, they define two complementary arcs
in T, such that the union of these complementary arcs is T ~ {wi, wa}. Let
E =T([0,1)), i.e.,, E is the image of I'. We claim that at least one of the two
complementary arcs, call it J, has the property that every radius ending at a point
of J intersects E in a set with a limit point in T, namely the end point of the
radius.

Admitting the claim, part (a) is proved as follows. For every ( € J, we have
a sequence of points t* = t*({) € [0,1) with ¢£ 1 1 such that T'(¢}) € [0,{) and
lim,, oo T'(tf) = ¢. Tt follows that g(T'(¢))) = v(t:) — B as n — oo. In particular if
¢ has a radial limit for ¢, then the radial limit has to be 5. Now g has a radial limit
for almost every ¢ in J (in fact in T) by Fatou’s theorem for bounded holomorphic
functions (see Thm. 1.1.2 of Lecture 23). It follows that the radial limit function ¢
of g satisfies ¢|; = 8 a.e. J. By Theorem 1.1.4 of Lecture 23, we have g = 8 on A.
However g is univalent. This gives a contradiction, proving (a), provided we admit
the claim we made.

Here is the proof of the claim we made. Suppose I and J are the two comple-

mentary arcs of T defined by w; and ws, and suppose neither arc satisfies the claim
made. Then there exists rg, with 0 < rg < 1, and points &; € I, & € J such that
(%) EN(ro&, &) =0 for:=1,2.
Consider the open subset U of A obtained by deleting the two radii [0, &) and [0, &2)
from A. Then U breaks up into two disjoint open sectors, U; containing w;, and
Us containing we. Since lim;_,; [I'(¢)] = 1 and since f(z2,) — w1, f(z2n+1) — wa,
there exists N € N such that for ¢t > ty, |I'(t)| > ro and for n > N, f(z2,) € Un,
f(zan+1) € Ua.

Since I'(t) has absolute value greater than rg for ¢ > tx, therefore for n > N
T'([tan, tan+1]) is a connected subset of {z | rg < |z| < 1}. On the other hand, by
(*), F([tgn,t2n+1]) N [Tofi,fi) = @ for i = 1, 2 and hence

F([thath—&-lD C U= U1 L UQ.
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Since F(tgn) € U; and F(tgn_;,_l) (S UQ, the sets U; N F([tgn, tgn_;,_ﬂ) and U; N
L([tan, tan+1]) give a disconnection of I'([ta,, tan+1]). This is a contradiction. This
proves the claim and hence completes the proof of (a).

As for (b), suppose f has been extended to QU{ 31, B2} asin (a). Let 11 and v2 be
curves with parameter interval [0, 1] such that v;(¢) € Q for t < 1 and 7;(1) = 5;, for
i=1,2. Let T; = go~y;. Clearly limy_y g(T';(¢)) = lim;—,; ;(¢t) = ;. By Lindelof’s
theorem (Theorem 1.2.1 of Lecture 23), it follows that the radial limit of g at f(8;)
is ;. Thus if f(B1) = f(B2), then B1 = fa. O

The following corollary is important enough to have the status of a theorem

Theorem 1.1.4 (Carathéodary). Let ) be a bounded simply connected all of whose
boundary points a simple. Then every univalent surjective map f: Q2 — A extends
uniquely to a continuous map Q0 — A. This extension is one-to-one, onto, and
sends points on the boundary of  to points in T.

REFERENCES

[R] W. Rudin, Real and Complex Analysis, (Third Edition), McGraw-Hill, New York, 1987.



