
LECTURE 24

Date of Lecture: April 10, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

The unit circle will be denoted T instead of C. As usual ∆ will denote the open
unit disc. As before, for 1 ≤ p ≤ ∞ we identify Lp([−π, π]) with Lp(T), where
the σ-algebras in play are the Borel σ-algebras and the measures, the normalised
Lebesgue on [−π, π] (the usual Lebesgue measure divided by 2π) and the Haar
measure on T. The identification is the standard one.

1. Boundary values of the Riemann mapping

This is a rich topic. We will confine ourselves to one aspect, namely Caratheodary’s
beautiful theorem that if f : Ω→ ∆ is a univalent surjective map (note this forces Ω
to be simply connected) then f can be extended as a continuous function to simple
points of the boundary. This theorem makes it easier to prove Picard’s theorem,but
is clearly very interesting in its own right.

1.1. Simple boundary points. Let Ω be a simply connected region. Recall that
the boundary of Ω is ∂Ω = Ω ∩ (C r Ω). Points of ∂Ω are called boundary points.
Recall that a curve in Ω is a continuous map γ : [a, b]→ Ω (see beginning of § 2 of
Lecture 2).

Definition 1.1.1 (Simple boundary point). A boundary point β of Ω is called
a simple boundary point if it has the following property. Given a sequence {zn}
of points in Ω such that zn → β as n → ∞, there exists a curve γ : [0, 1] → Ω
such that γ(t) ∈ Ω for t < 1, γ(1) = β and there exist a sequence {tn} with
0 < t1 < · · · < tn < tn+1 < . . . such that γ(tn) = zn for every n ∈ N.

Examples 1.1.2. Here are two examples:
1) Let Ω = ∆ r [0, 1). Then β = 1/2 is a boundary point of Ω. It is easy

to see that β cannot be a simple boundary. Indeed, consider the sequence zn =
1/2+(−1)n(1/n)i. Then zn → β. It is not possible to connect the z′ns by a contour
γ : [0, 1] → Ω in such a way that γ(t) ∈ Ω for t < 1 and γ(1) = β = 1/2. In
fact, as is easy to see, every β in the open interval (0, 1) provides an example of a
non-simple boundary point of Ω.

2) Suppose a boundary point β is such that B(β, r) ∩ Ω is connected for all
sufficiently small radii r. Then a little thought shows that β must be a simple
boundary point of Ω. Indeed, we have a subsequence {znk

} of zn such that |β−zm| <
1/k for all m ≥ nk. For sufficiently large k, say k ≥ k0, our hypothesis implies that
B(β, 1/k) ∩ Ω is connected. Connect zm to zm+1 by any curve in Ω for m ≤ k0.
For m ∈ {nk, . . . , nk+1 − 1}, with k ≥ k0, connect zm to zm+1 by a curve in
B(β, 1/k) ∩ Ω (which is connected). Take the amalgamation of all the curves, to
get a map γ : [0, 1) → Ω such that limt→1 γ(t) = β. Extend γ to [0, 1] by setting
γ(1) = β.
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Theorem 1.1.3 (Carathéodary). Let f : Ω → ∆ be a univalent surjective map
from a bounded simply connected region Ω.

(a) If β is a simple boundary point of Ω then f can be extended as a continuous
function to Ω ∪ {β}. If f is so extended, then |f(β)| = 1.

(b) If β1 and β2 are two distinct simple boundary points of Ω and f is extended
to Ω ∪ {β1, β2} as in (a), then f(β1) 6= f(β2).

Proof. Let g : ∆→ Ω be the map inverse to f . Since Ω is bounded g is bounded.
Suppose f cannot be extended to Ω ∪ {β}. Then there exists a sequence {zn}

in Ω converging to β, two distinct points w1 and w2 in ∆, such that f(z2n) → w1

and f(z2n+1)→ w2 as n→∞.
Since β is a simple boundary point, we can find a curve γ : [0, 1] → Ω, and a

sequence {tn}, 0 < t1 < · · · < tn < . . . such that γ(t) ∈ Ω for 0 ≤ t < 1, γ(1) = β,
and such that γ(tn) = zn.

Let Γ(t) = f(γ(t)) for t ∈ [0, 1). Then Γ is continuous on the half-open interval
[0, 1). For 0 < r < 1 let Kr = g(B(0, r). Then Kr is compact in Ω. Now,
limt→1 γ(t) = β and hence for a fixed r, there exists t∗ (depending upon r), 0 <
t∗ < 1, such that γ(t) /∈ Kr for t∗ < t < 1. This means |Γ(t)| = |f(γ(t))| > r for
t∗ < t < 1. It follows that limt→1 |Γ(t)| = 1. In particular |w1| = |w2| = 1, i.e.,
wk ∈ T for k = 1, 2.

Since w1 and w2 are distinct points of T, they define two complementary arcs
in T, such that the union of these complementary arcs is T r {w1, w2}. Let
E = Γ([0, 1)), i.e., E is the image of Γ. We claim that at least one of the two
complementary arcs, call it J , has the property that every radius ending at a point
of J intersects E in a set with a limit point in T, namely the end point of the
radius.

Admitting the claim, part (a) is proved as follows. For every ζ ∈ J , we have
a sequence of points t∗n = t∗n(ζ) ∈ [0, 1) with t∗n ↑ 1 such that Γ(t∗n) ∈ [0, ζ) and
limn→∞ Γ(t∗n) = ζ. It follows that g(Γ(t∗n)) = γ(t∗n)→ β as n→∞. In particular if
g has a radial limit for ζ, then the radial limit has to be β. Now g has a radial limit
for almost every ζ in J (in fact in T) by Fatou’s theorem for bounded holomorphic
functions (see Thm. 1.1.2 of Lecture 23). It follows that the radial limit function ϕ
of g satisfies ϕ|J = β a.e. J . By Theorem 1.1.4 of Lecture 23, we have g ≡ β on ∆.
However g is univalent. This gives a contradiction, proving (a), provided we admit
the claim we made.

Here is the proof of the claim we made. Suppose I and J are the two comple-
mentary arcs of T defined by w1 and w2, and suppose neither arc satisfies the claim
made. Then there exists r0, with 0 < r0 < 1, and points ξ1 ∈ I, ξ2 ∈ J such that

(∗) E ∩ (r0ξi, ξi) = ∅ for i = 1, 2.

Consider the open subset U of ∆ obtained by deleting the two radii [0, ξ1) and [0, ξ2)
from ∆. Then U breaks up into two disjoint open sectors, U1 containing w1, and
U2 containing w2. Since limt→1 |Γ(t)| = 1 and since f(z2n) → w1, f(z2n+1) → w2,
there exists N ∈ N such that for t ≥ tN , |Γ(t)| > r0 and for n ≥ N , f(z2n) ∈ U1,
f(z2n+1) ∈ U2.

Since Γ(t) has absolute value greater than r0 for t ≥ tN , therefore for n ≥ N
Γ([t2n, t2n+1]) is a connected subset of {z | r0 < |z| < 1}. On the other hand, by
(∗), Γ([t2n, t2n+1]) ∩ [r0ξi, ξi) = ∅ for i = 1, 2 and hence

Γ([t2n, t2n+1]) ⊂ U = U1 t U2.
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Since Γ(t2n) ∈ U1 and Γ(t2n+1) ∈ U2, the sets U1 ∩ Γ([t2n, t2n+1]) and U1 ∩
Γ([t2n, t2n+1]) give a disconnection of Γ([t2n, t2n+1]). This is a contradiction. This
proves the claim and hence completes the proof of (a).

As for (b), suppose f has been extended to Ω∪{β1, β2} as in (a). Let γ1 and γ2 be
curves with parameter interval [0, 1] such that γi(t) ∈ Ω for t < 1 and γi(1) = βi, for
i = 1, 2. Let Γi = g ◦γi. Clearly limt→1 g(Γi(t)) = limt→1 γi(t) = βi. By Lindelöf’s
theorem (Theorem 1.2.1 of Lecture 23), it follows that the radial limit of g at f(βi)
is βi. Thus if f(β1) = f(β2), then β1 = β2. �

The following corollary is important enough to have the status of a theorem

Theorem 1.1.4 (Carathéodary). Let Ω be a bounded simply connected all of whose
boundary points a simple. Then every univalent surjective map f : Ω→ ∆ extends
uniquely to a continuous map Ω → ∆. This extension is one-to-one, onto, and
sends points on the boundary of Ω to points in T.
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