LECTURE 24

Date of Lecture: April 10, 2017
Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

The unit circle will be denoted \mathbf{T} instead of C. As usual Δ will denote the open unit disc. As before, for $1 \leq p \leq \infty$ we identify $L^{p}([-\pi, \pi])$ with $L^{p}(\mathbf{T})$, where the σ-algebras in play are the Borel σ-algebras and the measures, the normalised Lebesgue on $[-\pi, \pi]$ (the usual Lebesgue measure divided by 2π) and the Haar measure on \mathbf{T}. The identification is the standard one.

1. Boundary values of the Riemann mapping

This is a rich topic. We will confine ourselves to one aspect, namely Caratheodary's beautiful theorem that if $f: \Omega \rightarrow \Delta$ is a univalent surjective map (note this forces Ω to be simply connected) then f can be extended as a continuous function to simple points of the boundary. This theorem makes it easier to prove Picard's theorem,but is clearly very interesting in its own right.
1.1. Simple boundary points. Let Ω be a simply connected region. Recall that the boundary of Ω is $\partial \Omega=\bar{\Omega} \cap(\mathbf{C} \backslash \Omega)$. Points of $\partial \Omega$ are called boundary points. Recall that a curve in Ω is a continuous map $\gamma:[a, b] \rightarrow \Omega$ (see beginning of $\S 2$ of Lecture 2).

Definition 1.1.1 (Simple boundary point). A boundary point β of Ω is called a simple boundary point if it has the following property. Given a sequence $\left\{z_{n}\right\}$ of points in Ω such that $z_{n} \rightarrow \beta$ as $n \rightarrow \infty$, there exists a curve $\gamma:[0,1] \rightarrow \bar{\Omega}$ such that $\gamma(t) \in \Omega$ for $t<1, \gamma(1)=\beta$ and there exist a sequence $\left\{t_{n}\right\}$ with $0<t_{1}<\cdots<t_{n}<t_{n+1}<\ldots$ such that $\gamma\left(t_{n}\right)=z_{n}$ for every $n \in \mathbb{N}$.

Examples 1.1.2. Here are two examples:

1) Let $\Omega=\Delta \backslash[0,1)$. Then $\beta=1 / 2$ is a boundary point of Ω. It is easy to see that β cannot be a simple boundary. Indeed, consider the sequence $z_{n}=$ $1 / 2+(-1)^{n}(1 / n) i$. Then $z_{n} \rightarrow \beta$. It is not possible to connect the $z_{n}^{\prime} s$ by a contour $\gamma:[0,1] \rightarrow \bar{\Omega}$ in such a way that $\gamma(t) \in \Omega$ for $t<1$ and $\gamma(1)=\beta=1 / 2$. In fact, as is easy to see, every β in the open interval $(0,1)$ provides an example of a non-simple boundary point of Ω.
2) Suppose a boundary point β is such that $B(\beta, r) \cap \Omega$ is connected for all sufficiently small radii r. Then a little thought shows that β must be a simple boundary point of Ω. Indeed, we have a subsequence $\left\{z_{n_{k}}\right\}$ of z_{n} such that $\left|\beta-z_{m}\right|<$ $1 / k$ for all $m \geq n_{k}$. For sufficiently large k, say $k \geq k_{0}$, our hypothesis implies that $B(\beta, 1 / k) \cap \Omega$ is connected. Connect z_{m} to z_{m+1} by any curve in Ω for $m \leq k_{0}$. For $m \in\left\{n_{k}, \ldots, n_{k+1}-1\right\}$, with $k \geq k_{0}$, connect z_{m} to z_{m+1} by a curve in $B(\beta, 1 / k) \cap \Omega$ (which is connected). Take the amalgamation of all the curves, to get a map $\gamma:[0,1) \rightarrow \Omega$ such that $\lim _{t \rightarrow 1} \gamma(t)=\beta$. Extend γ to [0, 1] by setting $\gamma(1)=\beta$.

Theorem 1.1.3 (Carathéodary). Let $f: \Omega \rightarrow \Delta$ be a univalent surjective map from a bounded simply connected region Ω.
(a) If β is a simple boundary point of Ω then f can be extended as a continuous function to $\Omega \cup\{\beta\}$. If f is so extended, then $|f(\beta)|=1$.
(b) If β_{1} and β_{2} are two distinct simple boundary points of Ω and f is extended to $\Omega \cup\left\{\beta_{1}, \beta_{2}\right\}$ as in (a), then $f\left(\beta_{1}\right) \neq f\left(\beta_{2}\right)$.

Proof. Let $g: \Delta \rightarrow \Omega$ be the map inverse to f. Since Ω is bounded g is bounded.
Suppose f cannot be extended to $\Omega \cup\{\beta\}$. Then there exists a sequence $\left\{z_{n}\right\}$ in Ω converging to β, two distinct points w_{1} and w_{2} in $\bar{\Delta}$, such that $f\left(z_{2 n}\right) \rightarrow w_{1}$ and $f\left(z_{2 n+1}\right) \rightarrow w_{2}$ as $n \rightarrow \infty$.

Since β is a simple boundary point, we can find a curve $\gamma:[0,1] \rightarrow \Omega$, and a sequence $\left\{t_{n}\right\}, 0<t_{1}<\cdots<t_{n}<\ldots$ such that $\gamma(t) \in \Omega$ for $0 \leq t<1, \gamma(1)=\beta$, and such that $\gamma\left(t_{n}\right)=z_{n}$.

Let $\Gamma(t)=f(\gamma(t))$ for $t \in[0,1)$. Then Γ is continuous on the half-open interval $[0,1)$. For $0<r<1$ let $K_{r}=g\left(\bar{B}(0, r)\right.$. Then K_{r} is compact in Ω. Now, $\lim _{t \rightarrow 1} \gamma(t)=\beta$ and hence for a fixed r, there exists t^{*} (depending upon r), $0<$ $t^{*}<1$, such that $\gamma(t) \notin K_{r}$ for $t^{*}<t<1$. This means $|\Gamma(t)|=|f(\gamma(t))|>r$ for $t^{*}<t<1$. It follows that $\lim _{t \rightarrow 1}|\Gamma(t)|=1$. In particular $\left|w_{1}\right|=\left|w_{2}\right|=1$, i.e., $w_{k} \in \mathbf{T}$ for $k=1,2$.

Since w_{1} and w_{2} are distinct points of \mathbf{T}, they define two complementary arcs in \mathbf{T}, such that the union of these complementary arcs is $\mathbf{T} \backslash\left\{w_{1}, w_{2}\right\}$. Let $E=\Gamma([0,1))$, i.e., E is the image of Γ. We claim that at least one of the two complementary arcs, call it J, has the property that every radius ending at a point of J intersects E in a set with a limit point in \mathbf{T}, namely the end point of the radius.

Admitting the claim, part (a) is proved as follows. For every $\zeta \in J$, we have a sequence of points $t_{n}^{*}=t_{n}^{*}(\zeta) \in[0,1)$ with $t_{n}^{*} \uparrow 1$ such that $\Gamma\left(t_{n}^{*}\right) \in[0, \zeta)$ and $\lim _{n \rightarrow \infty} \Gamma\left(t_{n}^{*}\right)=\zeta$. It follows that $g\left(\Gamma\left(t_{n}^{*}\right)\right)=\gamma\left(t_{n}^{*}\right) \rightarrow \beta$ as $n \rightarrow \infty$. In particular if g has a radial limit for ζ, then the radial limit has to be β. Now g has a radial limit for almost every ζ in J (in fact in \mathbf{T}) by Fatou's theorem for bounded holomorphic functions (see Thm. 1.1.2 of Lecture 23). It follows that the radial limit function φ of g satisfies $\left.\varphi\right|_{J}=\beta$ a.e. J. By Theorem 1.1.4 of Lecture 23 , we have $g \equiv \beta$ on Δ. However g is univalent. This gives a contradiction, proving (a), provided we admit the claim we made.

Here is the proof of the claim we made. Suppose I and J are the two complementary arcs of \mathbf{T} defined by w_{1} and w_{2}, and suppose neither arc satisfies the claim made. Then there exists r_{0}, with $0<r_{0}<1$, and points $\xi_{1} \in I, \xi_{2} \in J$ such that

$$
\begin{equation*}
E \cap\left(r_{0} \xi_{i}, \xi_{i}\right)=\emptyset \quad \text { for } i=1,2 \tag{*}
\end{equation*}
$$

Consider the open subset U of Δ obtained by deleting the two radii $\left[0, \xi_{1}\right)$ and $\left[0, \xi_{2}\right)$ from Δ. Then U breaks up into two disjoint open sectors, U_{1} containing w_{1}, and U_{2} containing w_{2}. Since $\lim _{t \rightarrow 1}|\Gamma(t)|=1$ and since $f\left(z_{2 n}\right) \rightarrow w_{1}, f\left(z_{2 n+1}\right) \rightarrow w_{2}$, there exists $N \in \mathbb{N}$ such that for $t \geq t_{N},|\Gamma(t)|>r_{0}$ and for $n \geq N, f\left(z_{2 n}\right) \in U_{1}$, $f\left(z_{2 n+1}\right) \in U_{2}$.

Since $\Gamma(t)$ has absolute value greater than r_{0} for $t \geq t_{N}$, therefore for $n \geq N$ $\Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right)$ is a connected subset of $\left\{z\left|r_{0}<|z|<1\right\}\right.$. On the other hand, by $(*), \Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right) \cap\left[r_{0} \xi_{i}, \xi_{i}\right)=\emptyset$ for $i=1,2$ and hence

$$
\Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right) \subset U=U_{1} \sqcup U_{2}
$$

Since $\Gamma\left(t_{2 n}\right) \in U_{1}$ and $\Gamma\left(t_{2 n+1}\right) \in U_{2}$, the sets $U_{1} \cap \Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right)$ and $U_{1} \cap$ $\Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right)$ give a disconnection of $\Gamma\left(\left[t_{2 n}, t_{2 n+1}\right]\right)$. This is a contradiction. This proves the claim and hence completes the proof of (a).

As for (b), suppose f has been extended to $\Omega \cup\left\{\beta_{1}, \beta_{2}\right\}$ as in (a). Let γ_{1} and γ_{2} be curves with parameter interval $[0,1]$ such that $\gamma_{i}(t) \in \Omega$ for $t<1$ and $\gamma_{i}(1)=\beta_{i}$, for $i=1,2$. Let $\Gamma_{i}=g \circ \gamma_{i}$. Clearly $\lim _{t \rightarrow 1} g\left(\Gamma_{i}(t)\right)=\lim _{t \rightarrow 1} \gamma_{i}(t)=\beta_{i}$. By Lindelöf's theorem (Theorem 1.2.1 of Lecture 23), it follows that the radial limit of g at $f\left(\beta_{i}\right)$ is β_{i}. Thus if $f\left(\beta_{1}\right)=f\left(\beta_{2}\right)$, then $\beta_{1}=\beta_{2}$.

The following corollary is important enough to have the status of a theorem
Theorem 1.1.4 (Carathéodary). Let Ω be a bounded simply connected all of whose boundary points a simple. Then every univalent surjective map $f: \Omega \rightarrow \Delta$ extends uniquely to a continuous map $\bar{\Omega} \rightarrow \bar{\Delta}$. This extension is one-to-one, onto, and sends points on the boundary of Ω to points in \mathbf{T}.

References

[R] W. Rudin, Real and Complex Analysis, (Third Edition), McGraw-Hill, New York, 1987.

