LECTURE 23

Date of Lecture: April 3, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

The unit circle will be denoted T instead of C'. As usual A will denote the open
unit disc. As before, for 1 < p < oo we identify LP([—m, 7]) with L?(T), where
the o-algebras in play are the Borel o-algebras and the measures, the normalised
Lebesgue on [—m, 7] (the usual Lebesgue measure divided by 27) and the Haar
measure on T. The identification is the standard one.

1. Radial Limits, Fatou’s Theorem

1.1. Radial limits. Let u: A — C be a measurable function, and suppose 0 €
[—7, 7] is such that lim,_,;— u(re®®) exists. Then we say that the radial limit of u
exists at 6, and the radial limit is lim, _,; - u(re?). As is common in these matters,
we often say in this case that the radial limit of u exists for . If the radial limit
exists for almost all ¢ € T (with respect to the Haar measure) then the radial limit
of u is any function ¢ on T which agrees with e? + lim,_,;- u(re?) for almost
all 8. In somewhat greater detail, for v with radial limits almost everywhere on T,
suppose FE is the set of Haar measure one given by

E={c"] lim wu(re?) exists}.
r—1-
Consider the measurable function R, : T — C such that

Ru () = lim,_,,- u(re??), ¢ E, .
0, otherwise.

Definition 1.1.1. Any measurable function ¢: T — C such that ¢ = R, a.e.on
T is called a radial limit of u.

We often abuse terminology and speak of “the” radial limit of w in the above
situation. We also call the equivalence class (modulo a.e.) of R, the radial limit.
In Problem 3 of HW 9, you proved (more than) the following.

Theorem 1.1.2 (Fatou’s theorem for bounded holomorphic functions). Let f(z)
be a bounded holomorphic function on A. Then

(a) The radial limit lim,_,,— f(re?) exists for almost all § € [—m, 7).

(b) Let ¢ be the radial limit of f. Then ¢ € L*(T) and its Fourier series is
ZZOZO ane’™, where Zf:o anz™ is the power series expansion of f in A.

(c) f=Plgl (¢ asin (b)).

There is an obvious corollary, namely,

Corollary 1.1.3. With above hypotheses and notations, ¢ € L>(T) and ||¢]lc =

sup.ea [f(2)]-
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Proof. Let M = sup,ca |f(2)]. Since ¢ is the radial limit of f it is obvious ||¢|lec <

M. This means ¢ € L*°(T). On the other hand, |f| = |P[¢]| < P[|l¢llo] = [|¥]lco;

whence M < [|¢||oo- O
Here is an extremely useful result concerning radial limits.

Theorem 1.1.4. Let J be an arc of positive length in T and suppose f is a bounded
holomorphic function on A and 8 a constant such that the radial limit ¢ = 3 almost
everywhere on J. Then f = on A.

Proof. Without loss of generality we may assume 8 = 0. Let n be a positive integer
such the the arc subtends an angle larger than 27 /n. Let ¢}, = e*™*/" k =0,...,n—
1. Define fr: A — C by the formula fx(z) = f(¢kz), 2 € A, k=0,...,n— 1.
Let f = H?:_Ol fr- Now each fi, and therefore f, is holomorphic. Moreover f is
bounded on A. If ¢ is its radial limit, then clearly from our hypotheses, ¢ = 0. Since
f= P[g], it follows that f is identically zero. The ring of holomorphic functions
on A is an integral domain (recall problem from the mid-term exam). Hence some
f1 is identically zero. From the definition of f;, this means f is identically zero.
O

1.2. Lindel6f’s Theorem. The theorem we now prove is an example of a tech-
nique called the Phragmén-Lindeldf method. 1t is a technique for finding bounds for
holomorphic functions on unbounded regions based on known bounds in the bound-
ary (the usual maximum principle only applies for bounded regions). A modification
of the technique sometimes yields bounds even when bounds are known in parts of
the boundary of a bounded region. The theorem we now state is due to Lindelof,
the first of a long line of great Finnish function theorists (the Nevanlinna brothers
and Ahlfors are his successors).

Theorem 1.2.1 (Lindel6f’s Theorem). Let I': [0,1] — A be a curve such that
T(t)e A for0<t<1, and T'(1) = 1. Let g be a bounded holomorphic function on
the A such that lim;_q g(T'(t)) exists, say

lim g(T'(¢)) = L.
Then the radial limit of g at @ = 0 exists and is L.

Proof. The following proof is from [R, Thm. 12.10, pp.259-260].

Since g is bounded, by dividing by a suitable constant we assume, without loss
of generality, that |g] < 1. We also assume, by subtracting by L if necessary, that
L = 0, and this too is at no cost to generality. Let € > 0 be given. There exists
to € [0,1) such that

(1.2.1.1) lg(T(t)| <e (t > to),
and such that, with o = Re(T'(¢o)),

(1.2.1.2) Re(I'(1)) > ro > % (t > to).

Pick r with ro < r < 1. Let Q = B(0,1) N B(2r,1). Since 1 > r > rg > 1/2, the
left-most boundary point of the disc B(2r,1), namely 2r — 1, is positive and less
than 1. In particular € is non-empty. Clearly €2 is symmetric about the vertical
line Re(z) = r and also about the real axis. This means that z €  if and only if
2r —z € Q), and that z € Q if and only if zZ € Q.
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On Q define a holomorphic function h(z) by the formula

(1.2.1.3) h(z) = g(2)g(2)g(2r — 2)g(2r — %).
Note that
(1.2.1.4) h(r) = |g(r)|*.

We will show h(r) < e. In view of (1.2.1.4) this will be enough.

Let t; = max{t € [to, 1] | Re(I'(t)) = r}. Clearly ty < t1 < 1. Let Ey = I'([t1, 1]),
and let Es be its reflection in the real axis. Next reflect Fy U E5 along the other
axis of symmetry of €, namely, the line z = r to get E’, and set E = E; UE; UE".
FE is clearly symmetric about the two known axes of symmetry of 2, namely the
zr-axis, and the vertical line x = r. We point out that the reflection of a point z
about the line x = r is 2r — z. This means the function h is symmetric about x = r,
as an easy inspection of the formula (1.2.1.3) shows.

Here is a picture for r = 3/4, and I'(t) = t +i(t~*° — 1) for r <t < 1 and equal
tot+i(r—1% —1) for 0 <t < r. Note that t; = r = 3/4. The red curve is F;.
The rest of the curves diamond are the various reflections of E; and the resulting
curvilnear diamond shape is . The centre of the interior of the diamond is 7.

Coming back to the general case, note that the right end point of F;, and hence
of F, is z = 1, and therefore the left end point of E is the reflection of this point in
the line x = r, i.e., it is the point z = 2r — 1. Neither end point lies in €. All other
points of E do indeed lie in 2.

Now ENQ = FE~ {2r —1,1}. By (1.2.1.1) and the fact that |g| < 1, we clearly
have

(1.2.1.5) h(z)] < & (e E~{2r —1,1})
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We want to conclude that |h(r)| (= h(r)) is less then e. If I'(¢;) = r, we are done
by (1.2.1.1)and (1.2.1.4). Otherwise, r is some sort of interior point of an open set
bounded by E (we will make this precise in a moment). However, we do not have a
bound for |h| on E, but only on E~ {2r—1,1}, and so the Maximum Principle does
not apply. This is the sort of situation where the Phragmén-Lindel6f technique is
often successful.

Since we have already taken care of the case where I'(¢1) = r, let us assume,
Im(I'(t1)) # 0. Let K be the union of E and all bounded components of the
complement of £ in C. Then K is compact, has E as its boundary, and r as an
interior point. For ¢ > 0 define (1 — 2)¢ and (2r — 1 — 2)°¢ on

U={z|2r—1<Re(z) <1}
the following way. Note that the strip U is simply connected and 1—z and 2r—1—=z
are holomorphic on U and nowhere vanishing there. If f(z) is such a nowhere
vanishing function on U, pick a branch of log(f(z)) on U and define f(2)° as

exp (¢ - log f(2)). Now that (1 — 2)¢ and (2r — 1 — 2)° are defined on U, define, for
c>0, h.: K — C as follows.

he(2) h(z)(1=2)(2r—1—2)° ifze K~ {2r—1,1},
c\%) =
0, if ze {2r—-1,1}.
Now h. is continuous on K, holomorphic in the interior of K, and on the boundary
E of K, |h.| < &, by (1.2.1.5). Since r is an interior point of K, by the Maximum
Principle, |h.(r)| < . Letting ¢ — 0 we obtain h(r) < e. O
REFERENCES

[R] W. Rudin, Real and Compler Analysis, (Third Edition), McGraw-Hill, New York, 1987.



