
LECTURE 23

Date of Lecture: April 3, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

The unit circle will be denoted T instead of C. As usual ∆ will denote the open
unit disc. As before, for 1 ≤ p ≤ ∞ we identify Lp([−π, π]) with Lp(T), where
the σ-algebras in play are the Borel σ-algebras and the measures, the normalised
Lebesgue on [−π, π] (the usual Lebesgue measure divided by 2π) and the Haar
measure on T. The identification is the standard one.

1. Radial Limits, Fatou’s Theorem

1.1. Radial limits. Let u : ∆ → C be a measurable function, and suppose θ ∈
[−π, π] is such that limr→1− u(reiθ) exists. Then we say that the radial limit of u
exists at θ, and the radial limit is limr→1− u(reiθ). As is common in these matters,
we often say in this case that the radial limit of u exists for eiθ. If the radial limit
exists for almost all ζ ∈ T (with respect to the Haar measure) then the radial limit
of u is any function ϕ on T which agrees with eiθ 7→ limr→1− u(reiθ) for almost
all θ. In somewhat greater detail, for u with radial limits almost everywhere on T,
suppose E is the set of Haar measure one given by

E = {eiθ | lim
r→1−

u(reiθ) exists}.

Consider the measurable function Ru : T→ C such that

Ru(eiθ) =

{
limr→1− u(reiθ), θ ∈ E,
0, otherwise.

Definition 1.1.1. Any measurable function ϕ : T → C such that ϕ = Ru a.e. on
T is called a radial limit of u.

We often abuse terminology and speak of “the” radial limit of u in the above
situation. We also call the equivalence class (modulo a.e.) of Ru the radial limit.

In Problem 3 of HW 9, you proved (more than) the following.

Theorem 1.1.2 (Fatou’s theorem for bounded holomorphic functions). Let f(z)
be a bounded holomorphic function on ∆. Then

(a) The radial limit limr→1− f(reiθ) exists for almost all θ ∈ [−π, π].
(b) Let ϕ be the radial limit of f . Then ϕ ∈ L2(T) and its Fourier series is∑∞

n=0 ane
int, where

∑∞
n=0 anz

n is the power series expansion of f in ∆.
(c) f = P [ϕ] (ϕ as in (b)).

There is an obvious corollary, namely,

Corollary 1.1.3. With above hypotheses and notations, ϕ ∈ L∞(T) and ‖ϕ‖∞ =
supz∈∆ |f(z)|.
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Proof. Let M = supz∈∆ |f(z)|. Since ϕ is the radial limit of f it is obvious ‖ϕ‖∞ ≤
M . This means ϕ ∈ L∞(T). On the other hand, |f | = |P [ϕ]| ≤ P [‖ϕ‖∞] = ‖ϕ‖∞,
whence M ≤ ‖ϕ‖∞. �

Here is an extremely useful result concerning radial limits.

Theorem 1.1.4. Let J be an arc of positive length in T and suppose f is a bounded
holomorphic function on ∆ and β a constant such that the radial limit ϕ = β almost
everywhere on J . Then f ≡ β on ∆.

Proof. Without loss of generality we may assume β = 0. Let n be a positive integer
such the the arc subtends an angle larger than 2π/n. Let ζk = e2πk/n, k = 0, . . . , n−
1. Define fk : ∆ → C by the formula fk(z) = f(ζkz), z ∈ ∆, k = 0, . . . , n − 1.

Let f̃ =
∏n−1
i=0 fk. Now each fk, and therefore f̃ , is holomorphic. Moreover f̃ is

bounded on ∆. If φ̃ is its radial limit, then clearly from our hypotheses, φ̃ = 0. Since
f̃ = P [ϕ̃], it follows that f is identically zero. The ring of holomorphic functions
on ∆ is an integral domain (recall problem from the mid-term exam). Hence some
fk is identically zero. From the definition of fk, this means f is identically zero.

�

1.2. Lindelöf ’s Theorem. The theorem we now prove is an example of a tech-
nique called the Phragmén-Lindelöf method. It is a technique for finding bounds for
holomorphic functions on unbounded regions based on known bounds in the bound-
ary (the usual maximum principle only applies for bounded regions). A modification
of the technique sometimes yields bounds even when bounds are known in parts of
the boundary of a bounded region. The theorem we now state is due to Lindelöf,
the first of a long line of great Finnish function theorists (the Nevanlinna brothers
and Ahlfors are his successors).

Theorem 1.2.1 (Lindelöf’s Theorem). Let Γ: [0, 1] → ∆ be a curve such that
Γ(t) ∈ ∆ for 0 ≤ t < 1, and Γ(1) = 1. Let g be a bounded holomorphic function on
the ∆ such that limt→1 g(Γ(t)) exists, say

lim
t→1

g(Γ(t)) = L.

Then the radial limit of g at θ = 0 exists and is L.

Proof. The following proof is from [R, Thm. 12.10, pp.259–260].
Since g is bounded, by dividing by a suitable constant we assume, without loss

of generality, that |g| < 1. We also assume, by subtracting by L if necessary, that
L = 0, and this too is at no cost to generality. Let ε > 0 be given. There exists
t0 ∈ [0, 1) such that

(1.2.1.1) |g(Γ(t))| < ε (t > t0),

and such that, with r0 = Re(Γ(t0)),

(1.2.1.2) Re(Γ(t)) > r0 >
1

2
(t > t0).

Pick r with r0 < r < 1. Let Ω = B(0, 1) ∩B(2r, 1). Since 1 > r > r0 > 1/2, the
left-most boundary point of the disc B(2r, 1), namely 2r − 1, is positive and less
than 1. In particular Ω is non-empty. Clearly Ω is symmetric about the vertical
line Re(z) = r and also about the real axis. This means that z ∈ Ω if and only if
2r − z ∈ Ω), and that z ∈ Ω if and only if z̄ ∈ Ω.
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On Ω define a holomorphic function h(z) by the formula

(1.2.1.3) h(z) = g(z)g(z̄)g(2r − z)g(2r − z̄).
Note that

(1.2.1.4) h(r) = |g(r)|4.
We will show h(r) ≤ ε. In view of (1.2.1.4) this will be enough.

Let t1 = max{t ∈ [t0, 1] | Re(Γ(t)) = r}. Clearly t0 < t1 < 1. Let E1 = Γ([t1, 1]),
and let E2 be its reflection in the real axis. Next reflect E1 ∪ E2 along the other
axis of symmetry of Ω, namely, the line x = r to get E′, and set E = E1 ∪E2 ∪E′.
E is clearly symmetric about the two known axes of symmetry of Ω, namely the
x-axis, and the vertical line x = r. We point out that the reflection of a point z
about the line x = r is 2r−z. This means the function h is symmetric about x = r,
as an easy inspection of the formula (1.2.1.3) shows.

Here is a picture for r = 3/4, and Γ(t) = t+ i(t−1.5 − 1) for r ≤ t ≤ 1 and equal
to t + i(r−1.5 − 1) for 0 ≤ t ≤ r. Note that t1 = r = 3/4. The red curve is E1.
The rest of the curves diamond are the various reflections of E1 and the resulting
curvilnear diamond shape is E. The centre of the interior of the diamond is r.

Coming back to the general case, note that the right end point of E1, and hence
of E, is z = 1, and therefore the left end point of E is the reflection of this point in
the line x = r, i.e., it is the point z = 2r− 1. Neither end point lies in Ω. All other
points of E do indeed lie in Ω.

Now E ∩ Ω = E r {2r − 1, 1}. By (1.2.1.1) and the fact that |g| < 1, we clearly
have

(1.2.1.5) |h(z)| < ε (z ∈ E r {2r − 1, 1})
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We want to conclude that |h(r)| (= h(r)) is less then ε. If Γ(t1) = r, we are done
by (1.2.1.1)and (1.2.1.4). Otherwise, r is some sort of interior point of an open set
bounded by E (we will make this precise in a moment). However, we do not have a
bound for |h| on E, but only on Er{2r−1, 1}, and so the Maximum Principle does
not apply. This is the sort of situation where the Phragmén-Lindelöf technique is
often successful.

Since we have already taken care of the case where Γ(t1) = r, let us assume,
Im(Γ(t1)) 6= 0. Let K be the union of E and all bounded components of the
complement of E in C. Then K is compact, has E as its boundary, and r as an
interior point. For c > 0 define (1− z)c and (2r − 1− z)c on

U = {z | 2r − 1 < Re(z) < 1}
the following way. Note that the strip U is simply connected and 1−z and 2r−1−z
are holomorphic on U and nowhere vanishing there. If f(z) is such a nowhere
vanishing function on U , pick a branch of log (f(z)) on U and define f(z)c as
exp (c · log f(z)). Now that (1− z)c and (2r − 1− z)c are defined on U , define, for
c > 0, hc : K → C as follows.

hc(z) =

{
h(z)(1− z)c(2r − 1− z)c, if z ∈ K r {2r − 1, 1},
0, if z ∈ {2r − 1, 1}.

Now hc is continuous on K, holomorphic in the interior of K, and on the boundary
E of K, |hc| < ε, by (1.2.1.5). Since r is an interior point of K, by the Maximum
Principle, |hc(r)| < ε. Letting c→ 0 we obtain h(r) ≤ ε. �
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