
LECTURES 21 AND 22

Date of Lectures: March 27 and 29, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

We will change notation from this lecture. The unit circle will be denoted T
instead of C. As usual ∆ will denote the open unit disc. As before, for 1 ≤ p ≤ ∞
we identify Lp([−π, π]) with Lp(T), where the σ-algebras in play are the Borel σ-
algebras and the measures, the normalised Lebesgue on [−π, π] (the usual Lebesgue
measure divided by 2π) and the Haar measure on T. The identification is the
standard one.

1. Some real analysis

Fix a closed interval [a, b] for the discussion that follows.

1.1. Functions of bounded variation. Functions of bounded variation α are the
functions for which the traditional Riemann-Steiljes

∫ b
a
f(x)dα(x) is defined. They

were defined by Jordan in 1881 to work out convergence of Fourier series. Later this
was generalised to the Lebesgue-Steiljes integral. Functions of bounded variation
are precisely those that can be written as the difference of two non-decreasing
functions. Right continuous (or left continuous) functions of bounded variation
α with α(a) = 0 can be identified with signed Borel measures on [a, b]. Indeed,
given a right continuous bounded variation function α, one defines the measure of
(p, q] ⊂ [a, b] to be α(p) − α(q) and the measure of {a} to be α(a). This defines
a signed measure µ on the sigma-algebra generated by such sets, namely the Borel
sigma algebra. Conversely, given a signed measure µ on [a, b] we define α by
α(a) = 0 and α(x) = µ([a, x]).

See [J], [R], and [T] for more details.
One of the first things we need to know is the following.

Theorem 1.1.1 (Lebesgue). Let f : [a, b] → R be a monotone function. Then f ′

exists almost everywhere.

Proof. See [J, Chapter 2, Theroem 1.2] or [T, Theorem 2.1, p.167]. �

The definition of a function of bounded variation is the following.

Definition 1.1.2 (Function of bounded variation). A function f : [a, b] → R is
said to be of bounded variation if

sup

{
n∑
i=1

∣∣∣f(xi)− f(xi−1)
∣∣∣} <∞

where the supremum is taken over all partitions a = x0 < x1 < · · · < xn−1 < xn = b
of [a, b].
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Theorem 1.1.3 (Jordan). A function f : [a, b] → R is of bounded variation if
and only if it can be written as the difference of two non-decreasing functions. In
particular, if f is of bounded variation, then f ′ exists almost everywhere.

Proof. See [T, p.31, Thm. 1.3] or [J, Chapter 2, Thm. 3.1]. �

Remark 1.1.4. If f is of bounded variation and is continuous at x0 then f can be
written as the difference of two monotone functions which are both continuous at
x0. See [J, Chapter 2, Thm. 3.2].

1.2. Absolutely continuous functions. The notion is due to Vitali, and predates
the definition of absolutely continuous measures. One way of thinking of them is
that they are the bounded variation functions associated with signed measures
which are absolutely continuous with respect to the Lebesgue measure. Here is the
definition

Definition 1.2.1 (Absolutely continuous functions). Let f : [a, b]→ R be a func-
tion. It is said to be absolutely continuous if given ε > 0, there exists a δ >
0, such that for any finite collection of non-overlapping intervals {(ai, bi)} with∑
i(bi − ai) < δ, we have ∑

i

∣∣∣f(bi)− f(ai)
∣∣∣ < ε.

Theorem 1.2.2. If f is absolutely continuous on [a, b] then it is of bounded vari-
ation, and hence f ′ exists almost everywhere on [a, b].

Proof. See [J, Chap. 3,Thm. 2.2]. �

Theorem 1.2.3. A function f : [a, b] → R is absolutely continuous if and only if
there exists ϕ ∈ L1([a, b]) such that

f(x) = f(a) +

∫ x

a

ϕ(t)dt.

In this case f ′ = ϕ a.e. on [a, b].

Proof. See [J, Chap. 3, Thms. 2.2 and 2.3]. See also [T, p. 177, Thm. 3.6] as well as
[R, p.148, Thm. 7.18]. �

1.3. Integration by parts. Suppose f and g are absolutely continuous on [a, b].
We would like integration by parts to hold for fg′. The product rule gives fg′ =
(fg)′ − gf ′ almost everywhere. The problem is that it is not a priori clear that∫ x
a

(fg)′(t)dt = f(x)g(x) − f(a)g(a). This would be true if fg is also absolutely
continuous. This is proven in Lemma 1.3.3 below. But first we need to define an
auxiliary function.

For our absolutely continuous function f , let V (f) : [a, b] → R be the function
given by

(1.3.1) (V (f))(x) = |f(a)|+
∫ x

a

|f ′(t)|dt.

By Theorem 1.2.3, V (f) is absolutely continuous. Moreover

(1.3.2) |f | ≤ V (f).

Indeed, clearly f ≤ V (f) and V (f) = V (−f), giving (1.3.2). Note also that V (f)
is non-decreasing. We are now in a position to prove the following:
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Lemma 1.3.3. Suppose f and g are absolutely continuous on [a, b]. Then the
product fg is also absolutely continuous.

Proof. Let ε > 0 be given. We have δ > 0 such that for any finite collection of
non-overlapping intervals {(ai, bi)} with

∑
i(ai − bi) < δ we have∑

i

∣∣∣f(ai)− f(bi)
∣∣∣ < ε

V (f)(b) + V (g)(b)

and ∑
i

∣∣∣g(ai)− g(bi)
∣∣∣ < ε

V (f)(b) + V (g)(b)

For such a collection of non-overlapping intervals {(ai, bi)} we have∑
i

∣∣∣f(ai)g(ai)− f(bi)g(bi)
∣∣∣ ≤∑

i

∣∣∣f(ai)g(ai)− f(ai)g(bi)
∣∣∣+
∑
i

∣∣∣f(ai)g(bi)− f(bi)g(bi)
∣∣∣

=
∑
i

∣∣∣f(ai)
∣∣∣∣∣∣(g(ai)− g(bi))

∣∣∣+
∑
i

∣∣∣(f(ai)− f(bi))
∣∣∣∣∣∣g(bi)

∣∣∣
≤ V (f)(b)

∑
i

∣∣∣(g(ai)− g(bi))
∣∣∣+ V (g)(b)

∑
i

∣∣∣(f(ai)− f(bi))
∣∣∣

< ε.

�
Here is the theorem we want:

Proposition 1.3.4 (Integration by parts). Suppose f and g are absolutely contin-
uous on [a, b]. Then∫ x

a

f(t)g′(t)dt = f(x)g(x)− f(a)g(a)−
∫ x

a

g(t)f ′(t)dt

for all x ∈ [a b].

Proof. We have fg′ = (fg)′ − gf ′. It follows that∫ x

a

f(t)g′(t)dt =

∫ x

a

(fg)′(t)dt−
∫ x

a

g(t)f ′(t)dt.

By Lemma 1.3.3, fg is absolutely continuous, and hence by Theorem 1.2.3 we have,∫ x

a

(fg)′(t)dt = f(x)g(x)− f(a)g(a).

This gives the result. �

2. Fatou’s Theorem

There are various versions of Fatou’s Theorem (see HW 9, problem 3, for the
version for bounded holomorphic functions on ∆–and this is the version that is most
useful for proving Picard’s theorem). The main theme here is the existence of radial
limits. In greater detail, the question is this: Suppose u is harmonic on ∆, and
u = P [ϕ] for some ϕ on T. Under what circumstances is ϕ(eiθ) = lim→1− u(reiθ)?
Here is the version from which the version in HW 9 follows, after a little bit of
work.
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Theorem 2.1 (Fatou’s Theorem for L1(T)). Let ϕ ∈ L1(T), F (x) =
∫ x
−π ϕ(t)dt,

and u = P [ϕ]. If F is differentiable at θ0, then

lim
r→1−

u(reiθ0) = F ′(θ0),

where the above equality means that the limit on the left side exists and equals the
number on the right. In particular the radial limits limr→1− u(reiθ) exist for almost
all θ.

Remark: Note that F is absolutely continuous and hence Theorem 1.2.2 and Theo-
rem 1.2.3 apply to it. In particular, F ′ exists almost everywhere and F ′ = ϕ almost
everywhere. Fatou’s Theorem for L1(T) then says that the radial limits converge
to ϕ almost everywhere, giving an answer of sorts for the Dirichlet problem on
the disc ∆ when the boundary function is L1. The following proof, which avoids
approximate identities, is via a private communication from Elias Katsoulis.

Proof. Without loss of generality assume θ0 = 0. In the computations below, in
the first line we are using the fact that Pr(−t) = Pr(t) for all t ∈ R, and in the
second line we are using Proposition 1.3.4. We have,

u(r)− F ′(0) =
1

2π

∫ π

−π
(ϕ(t)− F ′(0))Pr(t)dt

=
1

2π

[(
F (t)− tF ′(0)

)
P (t)

]π
t=−π

− 1

2π

∫ π

−π
(F (t)− tF ′(0))P ′r(t)dt

=
1

2π

1− r2

(1 + r)2
(F (π)− F (−π)− 2πF ′(0))− 1

2π

∫ π

−π
(F (t)− tF ′(0))P ′r(t)dt.

The first term above converges to 0 as r → 1−. We have to show the same for the
rest. For δ, 0 < δ < π, we have,

(∗)
∫ π

−π
(F (t)− tF ′(0))P ′r(t)dt =

∫ δ

−δ
(F (t)− tF ′(0))P ′r(t)dt+

(∫ −δ
−π

+

∫ π

δ

)
.

If |t| > δ we have∣∣∣P ′r(t)∣∣∣ =

∣∣∣∣∣ (1− r2)(−2r sin t)

(1− 2r cos t+ r2)2

∣∣∣∣∣ ≤ 2r(1− r2)

1− 2r cos δ + r2
.

Moreover, F being continuous, |F (t)− tF ′(0)| is bounded on [−π, π]. Thus the two
integrals within parenthesis in (∗) clearly → 0 and r → 1−, whatever be δ in the
range 0 < δ < π. We have to choose δ > 0 such that the integral∫ δ

−δ
(F (t)− tF ′(0))P ′r(t)dt

is small. An easy change of variables, using the fact that P ′r(−t) = −P ′r(t) for all
t, shows that∫ 0

−δ
(F (t)− tF ′(0))P ′r(t)dt = −

∫ δ

0

(F (−t) + tF ′(0))P ′r(t)dt.

Thus

(∗∗)
∫ δ

−δ
(F (t)− tF ′(0))P ′r(t)dt =

∫ δ

0

(
F (t)− F (−t)

2t
− F ′(0)

)
2tP ′r(t)dt
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Let ε > 0 be given. Choose δ > 0 such that

(†)

∣∣∣∣∣F (t)− F (−t)
2t

− F ′(0)

∣∣∣∣∣ < ε,

whenever |t| < δ. Then, from (∗∗) and (†) we have:

∣∣∣∣∣
∫ δ

−δ
(F (t)− tF ′(0))P ′r(t)dt

∣∣∣∣∣ < ε

∫ δ

0

|2tP ′r(t)|dt

= ε

∫ δ

0

2t(−P ′r(t))dt

≤ ε
∫ π

0

2t(−P ′r(t))dt

= 2ε

([
t(−Pr(t))

]r
t=0

+

∫ π

0

Pr(t)dt

)

= 2πε

[
− 1− r2

(1 + r)2
+ 1

]
≤ 2πε

since 1 − 1−r2
(1+r)2 ≤ 1 for 0 ≤ r < 1. (Note that since Pr(t) is an even function, we

have
∫ π
0
Pr(t)dt = (1/2)

∫ π
−π Pr(t)dt = (1/2)(2π) = π. This explains the last but

one step in the chain of computations above.) �

3. Fourier Series

Recall that the Hilberts spaces L2(T) and `2(Z) are isometrically isomorphic,
with the isomorphism Φ: L2(T) −→∼ `2(Z) being ϕ 7→ {ϕ̂(n)}. Let ϕ ∈ L2(T).
Since the Haar measure on T is a finite positive measure on T, P [ϕ] is a harmonic
function on u. If ϕ is R-valued, so is u, then with σ : C→ C being the conjugation
map z 7→ z̄, we have

(∗)

ϕ̂(−n) =
1

2π

∫ π

π

eintϕ(t)dt

=
1

2π
σ

(∫ π

π

e−intϕ(t)dt

)
= ϕ̂(n).
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3.1. The Fourier series of Pr. Suppose n ≥ 0. Let f(z) = zn. For 0 ≤ r < 1 we
have

rneinθ = f(reinθ)

=
1

2π

∫ π

−π
f(eit)Pr(θ − t)dt

=
1

2π

∫ π

−π
f(ei(θ)−t)Pr(t)dt

= einθ
1

2π

∫ π

−π
r−intPr(t)dt

= P̂r(n)einθ.

This means
P̂r(n) = rn, (n ≥ 0).

Applying (∗) to the above (since Pr is real valued), we get

(3.1.1) P̂r(n) = r|n|.

3.2. Fourier coefficients of Poisson transforms. As usual, if f is a function
on ∆, then for r, 0 ≤ r < 1, we define fr : T→ C by the formula

fr(e
it) := f(reit).

The main result is the following.

Lemma 3.2.1. Suppose ϕ ∈ L2(T) and u the harmonic function on ∆ given by
u = P [ϕ]. Then

ûr(n) = r|n|ϕ̂(n),

for n ∈ Z and 0 ≤ r < 1.

Proof. We have, for n and r in the required range,

ûr(n) =
1

2π

∫ π

−π
e−inθ

( 1

2π

∫ π

−π
Pr(t)ϕ(θ − t)dt

)
dθ

=
1

2π

∫ π

−π
e−intPt(t)

( 1

2π

∫ π

−π
e−in(θ−t)ϕ(θ − t)dθ

)
dt

= P̂r(n)ϕ̂(n).

Using (3.1.1) we are done. �
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