
LECTURE 20

Date of Lecture: March 22, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. The Poisson kernel on the unit disc

Let ∆ be the unit disc and C its bounding circle. We use the following standard
conventions. A (Borel) measurable function ϕ on C will be identified with the
corresponding function on [−π, π]. In other words, if θ ∈ [−π, π], we will feel
free to write ϕ(eiθ) or ϕ(θ) for the same number. We denote by Lp(C) the space
Lp(C, σ) where σ is the measure given by the uniform probability measure on C,
i.e., the arc-length measure divided by 2π. We refer to σ as the Haar measure
on C.1 For 1 ≤ p ≤ ∞, we identify Lp[−π, π] with Lp(C). A property is true
almost everywhere on C, if is true almost everywhere σ. Finally, as is standard,
the abbreviation a.e. will stand for almost everywhere. Note that these notions
(i.e., Lp or a.e.) on an interval in R are by default with respect to the Lebesgue
measure.

1.1. Poisson kernel. Let r be a real number, 0 ≤ r < 1. For θ ∈ [−π, π] define

(1.1.1) Pr(θ) =
1− r2

1− 2r cos θ + r2
.

Set a = reiθ and z = eit. An easy calculation shows,

(1.1.2) Pr(θ − t) =
1− |a|2

|z − a|2
= Re

[
z + a

z − a

]
.

Therefore, via Problem 1 of HW 6, if u is continuous on ∆ and harmonic in ∆, we
have

(1.1.3) u(reiθ) =
1

2π

∫ π

−π
u(eit)Pr(θ − t)dt

for 0 ≤ r < 1 and θ ∈ [−π, π]. The family of functions {Pr(θ)} is called the Poisson
kernel on C or on ∆. By obvious translation and scaling, it is clear one has Poisson
kernels for all discs/circles of finite radius in C, but we will concentrate on ∆.

1Usually, when one treats matters from the point of view of this lecture, the unit circle C is
denote T. We do not wish to switch notations in the middle of the course, so we will continue to

use the symbol C, with great reluctance.
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1.2. The Poisson integral. Now suppose f ∈ L1[−π, π] (f real-valued). Recall,
we also regard f as a member of L1(C) (see the discussion at the beginning of this
section). One defines the Poisson transformation or the Poisson integral of f to be
the function P [f ] given by

(1.2.1) P [f ](reiθ) =
1

2π

∫ π

−π
f(t)Pr(θ − t)dt

for r, θ such that 0 ≤ r < 1 and −π ≤ θ ≤ π.2 Applying (1.1.2) we get

(1.2.2)

P [f ](z) = Re

[
1

2π

∫ π

−π

eit + z

eit − z
f(t)dt

]

=
1

2π
Re

∫ π

−π

[
2eit

eit − z
− 1

]
f(t)dt

= −1 +
1

2π
Re

∫ π

−π

2eit

eit − z
f(t)dt.

The integral on the last line of (1.2.2) can be written in the form∫
X

1

ϕ(t)− z
dµ(t)

where X = [−π, π], ϕ(t) = eit, and µ is the Borel measure on [−π, π] given by
E 7→

∫
E

2eitf(t)dt. From Theorem 1.1 of Lecture 2, it follows that the above integral
defines a holomorphic function on C r C (in particular on ∆). In fact if K is a
closed subset of C such that f vanishes outside K, then the same argument3 shows
that the integral defines a holomorphic function on C r K, and therefore can be
extended to the part of the circle C outside K. In particular P [f ] is harmonic,
being the real part of a holomorphic function. These statements are included in
the following proposition which proves a little more.

Proposition 1.2.3. Let f ∈ L1[−π, π] and P [f ] : ∆ → R be the function defined
by the Poisson integral (1.2.1). Then

(a) Pf is harmonic.
(b) If K is a closed subset of C such that f is zero on C rK, then Pf extends

as a harmonic function to CrK.
(c) If g is another member of L1[−π, π], and α and β are real numbers, then

P [αf + βg] = αP [f ] + βP [g].
(d) If g is another member of L1[−π, π] and f ≥ g a.e., then P [f ] ≥ P [g] on

∆.
(e) If f is a constant e.e., say f = c a.e. on C, where c is a real number, then

Pf ≡ c on ∆.

Observation: If f = g a.e. on C then clearly g is also in L1[−π, π] and P [f ] = P [g].
We use this property without comment in what follows.

Proof. Parts (a) and (b) have been proven in the discussion above the statement
of the proposition. Part (c) is obvious. In view of (c), to prove (d) it is enough
to prove that if f > 0 then P [f ] > 0. But this is clear from (1.1.1) and (1.2.1),

2The formula shows that P [f ] is the convolution of f and Pr, i.e. P [f ] = f ∗ Pr.
3Replace the space X = [−π, π] by X = {t ∈ [−π, π] | eit ∈ K}.
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for Pr(t − θ) > 0 when 0 ≤ r < 1. Finally, if one applies (1.1.3) to the harmonic
function u ≡ c, we get (e). �

Remark 1.2.4. In parts (d) and (e) of the proposition, please note that the state-
ment is only being made for ∆. This is for two reasons. First, the inequality
Pr(t−θ) > 0 no longer holds when r > 1 and next, (1.1.3) is only true for reiθ ∈ ∆.

1.3. The Dirichlet problem on ∆. The problem, attributed to Dirichlet by Rie-
mann, is the following (in its modern form). Suppose Ω is a bounded region in C
and boundary ∂Ω is nice in some sense. Say, for simplicity that Ω is simply con-
nected ∂Ω is given by a closed Jordan path γ (i.e., Crγ∗ has only two components,
one of which is Ω. Suppose f function on ∂Ω. Can one extend f to a function u
on Ω such that u is harmonic on Ω and equals f on the boundary of Ω and in some
sense, for a boundary points p of Ω, f(p) is the limit of u(z) as z approaches the p
from Ω. The sense of limit could be Lp convergence, pointwise convergence, weak-*
convergence . . . – in a suitable function space.

The following theorem is a solution the Dirichlet problem on ∆.

Theorem 1.3.1. Let f be a real-valued Borel measurable function on [−π, π] which
is integrable with respect the Lebesgue measure, and as usual regard f also as a
function on C. Let eiθ0 be a point of continuity for f(eit). Then

lim
z→eiθ0
z∈∆

P [f ](z) = f(eiθ0).

In particular if f is continuous on C, then Pf extends to a continuous function on

∆ which agrees with f on C.

Proof. By replacing f by f − f(θ0) if necessary, and using parts (c) and (e) of
Proposition 1.2.3, we will assume, without loss of generality, that f(θ0) = 0.

Let ε > 0 be given. Since f is continuous and vanishes at eiθ0 , we can find a
closed arc J1 in C containing eiθ0 as an interior point, such that |f | < ε/2 on J1.
Let J2 be the closed arc in C having the same boundary points as J1 and such that
J1 ∪ J2 = C (the so-called complementary arc). Let f1 = fχ

J1
and f2 = fχ

J2
.

Now |f1| < ε/2 whence by parts (d) and (e) of Proposition 1.2.3 we have

(∗)
∣∣∣Pf1(z)

∣∣∣ ≤ ε

2
(z ∈ ∆)

Since f2 vanishes outside J2, therefore by part (b) of Proposition 1.2.3 we have
P [f2] extends as a harmonic function (in particular as a continuous function) on
Cr J2. Now eiθ0 ∈ Cr J2. Moroever for θ ∈ C r J2 and t ∈ J2 we have

f2(t)Pr(t− θ) = f2(t)
1− |eiθ|2

|eit − eiθ|2
= 0.

Since f2 vanishes outside J2, this means

P [f2](eiθ) = 0 (eiθ /∈ J2).

In particular, since eiθ0 ∈ Cr J2 so P [f2] is continuous at eiθ0 and vanishes there,
we can find ρ > 0 such that

(∗∗)
∣∣∣P [f2](z)

∣∣∣ < ε

2
(|z − eiθ0 | < ρ).
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Since f = f1 +f2 a.e. on C (they fail to be equal only on the two common boundary
points of J1 and J2), we have P [f1 + f2] = P [f ] by part (c) of Proposition 1.2.3.
This along with (∗) and (∗∗) gives us∣∣∣P [f ](z)

∣∣∣ ≤ ∣∣∣P [f1](c)
∣∣∣+
∣∣∣P [f2](z)

∣∣∣ < ε

for z ∈ ∆ ∩ {z | |z − eiθ0 | < ρ}. This is what we were required to show. �

2. Local Averaging Property

In this section will now show that if a continuous has the local averaging property
in a region, then it must be harmonic.

2.1. The maximum principle. Here is one way of stating the maximum principle
for functions with the local averaging property.

Lemma 2.1.1. A non-constant continuous real-valued function u on a region Ω
with the local averaging property has neither a maximum nor a minimum in Ω. In
particular, if Ω is a bounded set and u extends to a continuous function on Ω, then
u attains its maximum and minimum on the boundary of Ω.

Proof. If a ∈ Ω is a point such that u(z) ≤ u(a) for all z ∈ Ω, then we have
u − u(a) ≥ 0 on Ω. If B(a, ρ) is a closed disc in Ω with centre a, such that u has
the averaging property on B(a, r) for all r ≤ ρ, then we have

1

2π

∫ π

−π
(u(a+ reit)− u(a))dt = 0

for all 0 < r ≤ ρ. Since u − u(a) is continuous and non-negative, this means
u(z) = u(a) for z such that |z − a| = r and r ≤ ρ. In other words u is constant on
B(a, ρ). Thus the set {z ∈ Ω | u(z) = u(a)} is open and closed in Ω, and since Ω is
connected, this means u is constant. �

2.2. Harmonicity. Let us (temporarily) agree to say that a function is harmonic
on a closed disc if it is continuous on the closed disc and harmonic in the interior of
the dic. Lemma 2.1.1 more or less proves that continuous functions with the local
averaging are harmonic. A useful observation is that translations and dilations
do not change either the averaging property or harmonicity. In other words if
ϕ : B(a, r)→ ∆ is the obvious map z 7→ (1/r)(z− a) then u is harmonic on B(a, r)
(resp. the average of u over circles of radius ≤ r centred at a is u(a)) if and only if
u ◦ϕ−1 is harmonic (resp. the average of u ◦ϕ−1 over circles centred at 0 of radius
≤ 1 is u ◦ϕ−1(a)) on ∆. Note also that the local averaging property is true for u if
and only if u ◦ϕ−1 has the local averaging property.

Theorem 2.2.1. Suppose u is a continuous real-valued function with the local
averaging property on a region Ω. Then u is harmonic.

Proof. Let a ∈ Ω and ρ > 0 such that B(a, ρ) ⊂ Ω and

u(a) =
1

2π

∫ π

−π
u(a+ reit)dt

for r ≤ ρ. From the comments made before the statement of the theorem, we may
assume that a = 0 and ρ = 1, i.e., B(a, ρ) = ∆. Let f = u|C . Let v = P [f ].
Then u and v have the local averaging property on ∆ and are continuous on ∆.
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Therefore u− v has the these properties. Moreover (u− v)|C = 0. It follows from
Lemma 2.1.1 that u = v on ∆. Since v = P [f ] it is harmonic on ∆, and hence so
is u. �
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