LECTURE 2

Date of Lecture: January 7, 2017

As usual, this is only a summary, and not all proofs given in class are here. Theorem 1.1 is a more complete statement than what I put up in class (in class I did not mention the integral formula for the coefficients of the power series expansion), and so I have given a proof. As for Proposition 3.1.1, the proof in class was hurried, and hence I decided to write out one here.

1. Power Series

Recall that by definition, a complex measure on a measurable space has finite total variation, whence every bounded measurable **C**-valued function is integrable with respect to that measure.

Theorem 1.1. Let (X, \mathscr{F}, μ) be a complex measure space, $\varphi \colon X \to \mathbb{C}$ a measurable function, and Ω a region in \mathbb{C} such that $\varphi(X) \cap \Omega = \emptyset$. Let

(1.1.1)
$$f(z) = \int_X \frac{d\mu(\zeta)}{\varphi(\zeta) - z} \qquad (z \in \Omega).$$

Then f(z) is holomorphic on Ω and for any disc B(a, r) contained in Ω , f(z) has a power series representation

(1.1.2)
$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

The coefficients c_n satisfy

(1.1.3)
$$c_n = \int_X \frac{d\mu(\zeta)}{(\varphi(\zeta) - a)^{n+1}} \qquad (n \ge 0)$$

Proof. Let B = B(a, r) be an open ball in Ω . We then have the inequality

$$|\varphi(\zeta) - a| \ge r \qquad (\zeta \in X)$$

whence

$$\left|\frac{z-a}{\varphi(\zeta)-a}\right| \le \frac{|z-a|}{r} < 1 \qquad (z \in B).$$

Fix $z \in B$. The above inequality shows that the series $\sum_{n=0}^{\infty} ((z-a)/(\varphi(\zeta)-a))^n$ converges uniformly in $\zeta \in X$. An easy computation shows that the series equals $(\varphi(\zeta) - a)/(\varphi(\zeta) - z)$. We thus have

(*)
$$\frac{1}{\varphi(\zeta) - z} = \sum_{n=0}^{\infty} \frac{(z-a)^n}{(\varphi(\zeta) - a)^{n+1}}$$

with the convergence being uniform in ζ . Let δ be the distance from z to the closed set $\mathbf{C} \smallsetminus \Omega$. Since $|(\varphi(\zeta) - z)^{-1}| \leq 1/\delta$ for every $\zeta \in X$, the integrand in (1.1.1) is in $L^1(\mu)$ and hence $f(z) \in \mathbf{C}$ for all $z \in B$. The series (*) converges uniformly in

 $\zeta \in X$, whence the integral of the series passes through the summation sign, and we have:

$$\int_X \frac{d\mu(\zeta)}{\varphi(\zeta) - z} = \sum_{n=0}^\infty c_n (z - a)^n$$

with c_n satisfying (1.1.3). This proves the Theorem.

2. Path Integrals

A curve in **C** is a continuous map $\gamma: [a, b] \to \mathbf{C}$. The complex numbers $\gamma(a)$ and $\gamma(b)$ are called the end points of the curve γ . A path in **C** (in this course) will mean a curve $\gamma: [a, b] \to \mathbf{C}$ which is piecewise smooth. By this we mean that there is a partition of [a, b]

$$a = t_0 < t_1 < \dots < t_n = b$$

such that γ is differentiable on $[t_{i-1}, t_i]$, i = 1, ..., n, with the appropriate one sides derivatives existing at the end points of the interval, and the derivative function on $[t_{i-1}, t_i]$ is continuous.

The image of γ will be denoted γ^* . In other words $\gamma^* = \gamma([a, b])$.

If f is a continuous complex-valued function on a subset of C containing γ^* , then the path integral $\int_{\gamma} f(z) dz$ is defined as

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

We regard two paths γ and σ , with the same end points, equivalent if $\gamma^* = \sigma^*$ and

$$\int_{\gamma} f(z) dz = \int_{\sigma} f(z) dz$$

for all f continuous on γ^* . In particular re-parameterisations of γ give rise to equivalent paths. In greater detail, if $\varphi : [\alpha, \beta] \to [a, b]$ is a smooth diffeomorphism such that $\varphi(\alpha) = a$ and $\varphi(\beta) = b$ (the second condition is a consequence of the other hypotheses), then γ and $\gamma \circ \varphi$ are equivalent. A diffeomorphism is a smooth map which is bijective and whose derivatives are non-zero (with an obvious interpretation at the end points – namely the suitable one-sided derivative is non-zero).

3. Cauchy-Riemann Equations

Let $f: \Omega \to \mathbf{C}$ be a function on a non-empty open set Ω of \mathbf{C} , which has first partial derivatives, and whose real and Imaginary parts are u and v respectively. Then f is said to satisfy the Cauchy Riemann equations if

$$(*) f_x = -if_y$$

or in an equivalent form, if u and v satisfy

$$(**) u_x = v_y, \quad u_y = -v_x.$$

We proved the following in class:

Theorem 3.1. Let $f: \Omega \to \mathbf{C}$ function on a region Ω , and $f = u_i v$ its decomposition into real and imaginary parts.

- (a) If f is analytic, then f satisfies the Cauchy-Riemann equations.
- (b) If f is C^1 and satisfies the Cauchy-Riemann equations, then f is analytic on Ω .

As an easy consequence, we can prove the following

Proposition 3.1.1. Suppose $f: \Omega \to \mathbf{C}$ is a continuous function on a region Ω and for any path $\gamma: [a, b] \to \Omega$ the integral

$$\int_{\gamma} f(z) dz$$

depends only upon the end points a and b. Then f has a primitive (i.e., an antiderivative) F on Ω .

Proof. Pick a point z_0 in Ω . For $z \in \Omega$ define

$$F(z) = \int_{\gamma} f(\zeta) d\zeta$$

where γ is any path joining z_0 to z.

For h and k non-zero real numbers, define paths γ_h and σ_k to be the horizontal and vertical paths with speed 1 from z to z + h and z to z + ik respectively. For example, if h is positive, γ_h is the map from [0, h] to \mathbf{C} given by $t \mapsto t + h$, and if h is negative, γ_h is the map $t \mapsto t - h$ on [0, -h]. If k > 0, σ_k is the map $t \mapsto z + it$ on [0, k]. In any case

$$\frac{F(z+h) - F(z)}{h} = \frac{1}{h} \int_{\gamma_h} f(\zeta) d\zeta = \frac{1}{h} \int_0^h f(z+t) dt$$

and

$$\frac{F(z+ik)-F(z)}{k} = \frac{1}{k} \int_{\sigma_k} f(\zeta) d\zeta = \frac{i}{k} \int_0^k f(z+it) dt.$$

If x and y are the standard co-ordinates along real and imaginary axes, letting the (real) variables h and k go to zero in the above identities and applying the (real) fundamental theorem of Calculus we obtain

$$\frac{\partial F}{\partial x}(z) = f(z)$$
$$\frac{\partial F}{\partial y}(z) = if(z).$$

and

In other words
$$F$$
 satisfies the Cauchy-Riemann equations. Morever, since f is continuous, F is C^1 . By Theorem 3.1, F is analytic, whence $F' = F_x = f$. \Box