
LECTURE 2

Date of Lecture: January 7, 2017

As usual, this is only a summary, and not all proofs given in class are here.
Theorem 1.1 is a more complete statement than what I put up in class (in class I did
not mention the integral formula for the coefficients of the power series expansion),
and so I have given a proof. As for Proposition 3.1.1, the proof in class was hurried,
and hence I decided to write out one here.

1. Power Series

Recall that by definition, a complex measure on a measurable space has finite
total variation, whence every bounded measurable C-valued function is integrable
with respect to that measure.

Theorem 1.1. Let (X, F , µ) be a complex measure space, ϕ : X → C a measurable
function, and Ω a region in C such that ϕ(X) ∩ Ω = ∅. Let

(1.1.1) f(z) =

∫
X

dµ(ζ)

ϕ(ζ)− z
(z ∈ Ω).

Then f(z) is holomorphic on Ω and for any disc B(a, r) contained in Ω, f(z) has
a power series representation

(1.1.2) f(z) =

∞∑
n=0

cn(z − a)n.

The coefficients cn satisfy

(1.1.3) cn =

∫
X

dµ(ζ)

(ϕ(ζ)− a)n+1
(n ≥ 0).

Proof. Let B = B(a, r) be an open ball in Ω. We then have the inequality

|ϕ(ζ)− a| ≥ r (ζ ∈ X)

whence ∣∣∣∣ z − a
ϕ(ζ)− a

∣∣∣∣ ≤ |z − a|r
< 1 (z ∈ B).

Fix z ∈ B. The above inequality shows that the series
∑∞
n=0 ((z − a)/(ϕ(ζ)− a))

n

converges uniformly in ζ ∈ X. An easy computation shows that the series equals
(ϕ(ζ)− a)/(ϕ(ζ)− z). We thus have

(∗) 1

ϕ(ζ)− z
=

∞∑
n=0

(z − a)n

(ϕ(ζ)− a)n+1

with the convergence being uniform in ζ. Let δ be the distance from z to the closed
set C r Ω. Since |(ϕ(ζ) − z)−1| ≤ 1/δ for every ζ ∈ X, the integrand in (1.1.1) is
in L1(µ) and hence f(z) ∈ C for all z ∈ B. The series (∗) converges uniformly in
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ζ ∈ X, whence the integral of the series passes through the summation sign, and
we have: ∫

X

dµ(ζ)

ϕ(ζ)− z
=

∞∑
n=0

cn(z − a)n

with cn satisfying (1.1.3). This proves the Theorem. �

2. Path Integrals

A curve in C is a continuous map γ : [a, b] → C. The complex numbers γ(a)
and γ(b) are called the end points of the curve γ. A path in C (in this course) will
mean a curve γ : [a, b]→ C which is piecewise smooth. By this we mean that there
is a partition of [a, b]

a = t0 < t1 < · · · < tn = b

such that γ is differentiable on [ti−1, ti], i = 1, . . . , n, with the appropriate one sides
derivatives existing at the end points of the interval, and the derivative function on
[ti−1, ti] is continuous.

The image of γ will be denoted γ∗. In other words γ∗ = γ([a, b]).
If f is a continuous complex-valued function on a subset of C containing γ∗,

then the path integral
∫
γ
f(z)dz is defined as∫
γ

f(z)dz :=

∫ b

a

f(γ(t))γ′(t)dt.

We regard two paths γ and σ, with the same end points, equivalent if γ∗ = σ∗

and ∫
γ

f(z)dz =

∫
σ

f(z)dz

for all f continuous on γ∗. In particular re-parameterisations of γ give rise to
equivalent paths. In greater detail, if ϕ : [α, β]→ [a, b] is a smooth diffeomorphism
such that ϕ(α) = a and ϕ(β) = b (the second condition is a consequence of the other
hypotheses), then γ and γ ◦ϕ are equivalent. A diffeomorphism is a smooth map
which is bijective and whose derivatives are non-zero (with an obvious interpretation
at the end points – namely the suitable one-sided derivative is non-zero).

3. Cauchy-Riemann Equations

Let f : Ω → C be a function on a non-empty open set Ω of C, which has first
partial derivatives, and whose real and Imaginary parts are u and v respectively.
Then f is said to satisfy the Cauchy Riemann equations if

(∗) fx = −ify,
or in an equivalent form, if u and v satisfy

(∗∗) ux = vy, uy = −vx.
We proved the following in class:

Theorem 3.1. Let f : Ω→ C function on a region Ω, and f = uiv its decomposi-
tion into real and imaginary parts.

(a) If f is analytic, then f satisfies the Cauchy-Riemann equations.
(b) If f is C1 and satisfies the Cauchy-Riemann equations, then f is analytic

on Ω.
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As an easy consequence, we can prove the following

Proposition 3.1.1. Suppose f : Ω → C is a continuous function on a region Ω
and for any path γ : [a, b]→ Ω the integral∫

γ

f(z)dz

depends only upon the end points a and b. Then f has a primitive (i.e., an anti-
derivative) F on Ω.

Proof. Pick a point z0 in Ω. For z ∈ Ω define

F (z) =

∫
γ

f(ζ)dζ

where γ is any path joining z0 to z.
For h and k non-zero real numbers, define paths γh and σk to be the horizontal

and vertical paths with speed 1 from z to z + h and z to z + ik respectively. For
example, if h is positive, γh is the map from [0, h] to C given by t 7→ t+ h, and if
h is negative, γh is the map t 7→ t−h on [0, −h]. If k > 0, σk is the map t 7→ z+ it
on [0, k]. In any case

F (z + h)− F (z)

h
=

1

h

∫
γh

f(ζ)dζ =
1

h

∫ h

0

f(z + t)dt

and
F (z + ik)− F (z)

k
=

1

k

∫
σk

f(ζ)dζ =
i

k

∫ k

0

f(z + it)dt.

If x and y are the standard co-ordinates along real and imaginary axes, letting the
(real) variables h and k go to zero in the above identities and applying the (real)
fundamental theorem of Calculus we obtain

∂F

∂x
(z) = f(z)

and
∂F

∂y
(z) = if(z).

In other words F satisfies the Cauchy-Riemann equations. Morever, since f is
continuous, F is C1. By Theorem 3.1, F is analytic, whence F ′ = Fx = f . �
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