LECTURE 2

Date of Lecture: January 7, 2017

As usual, this is only a summary, and not all proofs given in class are here.
Theorem 1.1 is a more complete statement than what I put up in class (in class I did
not mention the integral formula for the coefficients of the power series expansion),
and so I have given a proof. As for Proposition 3.1.1, the proof in class was hurried,
and hence I decided to write out one here.

1. Power Series

Recall that by definition, a complex measure on a measurable space has finite
total variation, whence every bounded measurable C-valued function is integrable
with respect to that measure.

Theorem 1.1. Let (X, %, u) be a complex measure space, ¢: X — C a measurable
function, and Q a region in C such that o(X)NQ = 0. Let
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Then f(z) is holomorphic on Q and for any disc B(a,r) contained in Q, f(z) has
a power series representation
(1.1.2) f(z)= ch(z—a)".

n=0

The coefficients c,, satisfy
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(1.1.3) C,L_/Xi(w(o_a)nﬂ (n > 0).

Proof. Let B = B(a,r) be an open ball in 2. We then have the inequality
Q) —al>r  (C€X)

whence
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Fix z € B. The above inequality shows that the series -7 ((z — a)/(¢(¢) — a))"

converges uniformly in ¢ € X. An easy computation shows that the series equals

(p(¢) —a)/(v(¢) — z). We thus have

<1 (z € B).
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with the convergence being uniform in ¢. Let § be the distance from z to the closed
set C\ Q. Since |(¢(¢) — 2)71| < 1/6 for every ¢ € X, the integrand in (1.1.1) is
in L'(x) and hence f(z) € C for all z € B. The series () converges uniformly in
1



¢ € X, whence the integral of the series passes through the summation sign, and

we have:
Q) N n
— = cn(z—a
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with ¢, satisfying (1.1.3). This proves the Theorem. |

2. Path Integrals

A curve in C is a continuous map v: [a,b] — C. The complex numbers y(a)
and v(b) are called the end points of the curve 7. A path in C (in this course) will
mean a curve 7: [a,b] — C which is piecewise smooth. By this we mean that there
is a partition of [a, b]

a=tg<t1 <---<t,=0b
such that v is differentiable on [¢t;—1,¢;], 4 = 1,...,n, with the appropriate one sides
derivatives existing at the end points of the interval, and the derivative function on
[ti—1,1t;] is continuous.

The image of v will be denoted v*. In other words v* = ¥([a, b]).

If f is a continuous complex-valued function on a subset of C containing ~*,
then the path integral [ f(z)dz is defined as
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We regard two paths « and o, with the same end points, equivalent if v* = ¢
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for all f continuous on v*. In particular re-parameterisations of ~ give rise to
equivalent paths. In greater detail, if ¢: [, 8] — [a,b] is a smooth diffeomorphism
such that p(a) = a and ¢(8) = b (the second condition is a consequence of the other
hypotheses), then v and 7oy are equivalent. A diffeomorphism is a smooth map
which is bijective and whose derivatives are non-zero (with an obvious interpretation
at the end points — namely the suitable one-sided derivative is non-zero).

*

3. Cauchy-Riemann Equations

Let f: © — C be a function on a non-empty open set 2 of C, which has first
partial derivatives, and whose real and Imaginary parts are v and v respectively.
Then f is said to satisfy the Cauchy Riemann equations if

(%) fo = —ify,
or in an equivalent form, if u and v satisfy
(%) Uy = Vy, Uy = —Vg.
We proved the following in class:
Theorem 3.1. Let f: Q — C function on a region 2, and f = u;v its decomposi-

tion into real and imaginary parts.

(a) If f is analytic, then f satisfies the Cauchy-Riemann equations.
(b) If f is C' and satisfies the Cauchy-Riemann equations, then f is analytic
on €.



As an easy consequence, we can prove the following

Proposition 3.1.1. Suppose f: Q — C is a continuous function on a region 2
and for any path v: [a, b] = Q the integral

Lf(z)dz

depends only upon the end points a and b. Then [ has a primitive (i.e., an anti-
derivative) F on €.

Proof. Pick a point zg in . For z € € define
P = [ Qe
%l

where v is any path joining zy to z.

For h and k non-zero real numbers, define paths v, and o to be the horizontal
and vertical paths with speed 1 from 2z to z + h and z to z + ik respectively. For
example, if h is positive, v, is the map from [0, k] to C given by t — ¢ + h, and if
h is negative, ~y, is the map ¢t — t —h on [0, —h]. If & > 0, oy, is the map t — z + it
on [0, k]. In any case

F(z+h)— F(2) _ 1
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F(Z“]Z) F) _ %/ F(C)dC = é/ Flz +it)dt.
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If x and y are the standard co-ordinates along real and imaginary axes, letting the
(real) variables h and k go to zero in the above identities and applying the (real)
fundamental theorem of Calculus we obtain

F
= 1)
and OF
87/(2) =if(2).
In other words F' satisfies the Cauchy-Riemann equations. Morever, since f is
continuous, F' is C'. By Theorem 3.1, F is analytic, whence I’ = F, = f. ]



