LECTURE 2

Date of Lecture: January 7, 2017
As usual, this is only a summary, and not all proofs given in class are here. Theorem 1.1 is a more complete statement than what I put up in class (in class I did not mention the integral formula for the coefficients of the power series expansion), and so I have given a proof. As for Proposition 3.1.1, the proof in class was hurried, and hence I decided to write out one here.

1. Power Series

Recall that by definition, a complex measure on a measurable space has finite total variation, whence every bounded measurable \mathbf{C}-valued function is integrable with respect to that measure.

Theorem 1.1. Let (X, \mathscr{F}, μ) be a complex measure space, $\varphi: X \rightarrow \mathbf{C}$ a measurable function, and Ω a region in \mathbf{C} such that $\varphi(X) \cap \Omega=\emptyset$. Let

$$
\begin{equation*}
f(z)=\int_{X} \frac{d \mu(\zeta)}{\varphi(\zeta)-z} \quad(z \in \Omega) \tag{1.1.1}
\end{equation*}
$$

Then $f(z)$ is holomorphic on Ω and for any disc $B(a, r)$ contained in $\Omega, f(z)$ has a power series representation

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n} \tag{1.1.2}
\end{equation*}
$$

The coefficients c_{n} satisfy

$$
\begin{equation*}
c_{n}=\int_{X} \frac{d \mu(\zeta)}{(\varphi(\zeta)-a)^{n+1}} \quad(n \geq 0) \tag{1.1.3}
\end{equation*}
$$

Proof. Let $B=B(a, r)$ be an open ball in Ω. We then have the inequality

$$
|\varphi(\zeta)-a| \geq r \quad(\zeta \in X)
$$

whence

$$
\left|\frac{z-a}{\varphi(\zeta)-a}\right| \leq \frac{|z-a|}{r}<1 \quad(z \in B)
$$

Fix $z \in B$. The above inequality shows that the series $\sum_{n=0}^{\infty}((z-a) /(\varphi(\zeta)-a))^{n}$ converges uniformly in $\zeta \in X$. An easy computation shows that the series equals $(\varphi(\zeta)-a) /(\varphi(\zeta)-z)$. We thus have

$$
\begin{equation*}
\frac{1}{\varphi(\zeta)-z}=\sum_{n=0}^{\infty} \frac{(z-a)^{n}}{(\varphi(\zeta)-a)^{n+1}} \tag{*}
\end{equation*}
$$

with the convergence being uniform in ζ. Let δ be the distance from z to the closed set $\mathbf{C} \backslash \Omega$. Since $\left|(\varphi(\zeta)-z)^{-1}\right| \leq 1 / \delta$ for every $\zeta \in X$, the integrand in (1.1.1) is in $L^{1}(\mu)$ and hence $f(z) \in \mathbf{C}$ for all $z \in B$. The series $(*)$ converges uniformly in
$\zeta \in X$, whence the integral of the series passes through the summation sign, and we have:

$$
\int_{X} \frac{d \mu(\zeta)}{\varphi(\zeta)-z}=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}
$$

with c_{n} satisfying (1.1.3). This proves the Theorem.

2. Path Integrals

A curve in \mathbf{C} is a continuous map $\gamma:[a, b] \rightarrow \mathbf{C}$. The complex numbers $\gamma(a)$ and $\gamma(b)$ are called the end points of the curve γ. A path in \mathbf{C} (in this course) will mean a curve $\gamma:[a, b] \rightarrow \mathbf{C}$ which is piecewise smooth. By this we mean that there is a partition of $[a, b]$

$$
a=t_{0}<t_{1}<\cdots<t_{n}=b
$$

such that γ is differentiable on $\left[t_{i-1}, t_{i}\right], i=1, \ldots, n$, with the appropriate one sides derivatives existing at the end points of the interval, and the derivative function on [t_{i-1}, t_{i}] is continuous.

The image of γ will be denoted γ^{*}. In other words $\gamma^{*}=\gamma([a, b])$.
If f is a continuous complex-valued function on a subset of \mathbf{C} containing γ^{*}, then the path integral $\int_{\gamma} f(z) d z$ is defined as

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t .
$$

We regard two paths γ and σ, with the same end points, equivalent if $\gamma^{*}=\sigma^{*}$ and

$$
\int_{\gamma} f(z) d z=\int_{\sigma} f(z) d z
$$

for all f continuous on γ^{*}. In particular re-parameterisations of γ give rise to equivalent paths. In greater detail, if $\varphi:[\alpha, \beta] \rightarrow[a, b]$ is a smooth diffeomorphism such that $\varphi(\alpha)=a$ and $\varphi(\beta)=b$ (the second condition is a consequence of the other hypotheses), then γ and $\gamma \circ \varphi$ are equivalent. A diffeomorphism is a smooth map which is bijective and whose derivatives are non-zero (with an obvious interpretation at the end points - namely the suitable one-sided derivative is non-zero).

3. Cauchy-Riemann Equations

Let $f: \Omega \rightarrow \mathbf{C}$ be a function on a non-empty open set Ω of \mathbf{C}, which has first partial derivatives, and whose real and Imaginary parts are u and v respectively. Then f is said to satisfy the Cauchy Riemann equations if

$$
\begin{equation*}
f_{x}=-i f_{y}, \tag{*}
\end{equation*}
$$

or in an equivalent form, if u and v satisfy
(**) $\quad u_{x}=v_{y}, \quad u_{y}=-v_{x}$.
We proved the following in class:
Theorem 3.1. Let $f: \Omega \rightarrow \mathbf{C}$ function on a region Ω, and $f=u_{i} v$ its decomposition into real and imaginary parts.
(a) If f is analytic, then f satisfies the Cauchy-Riemann equations.
(b) If f is C^{1} and satisfies the Cauchy-Riemann equations, then f is analytic on Ω.

As an easy consequence, we can prove the following
Proposition 3.1.1. Suppose $f: \Omega \rightarrow \mathbf{C}$ is a continuous function on a region Ω and for any path $\gamma:[a, b] \rightarrow \Omega$ the integral

$$
\int_{\gamma} f(z) d z
$$

depends only upon the end points a and b. Then f has a primitive (i.e., an antiderivative) F on Ω.
Proof. Pick a point z_{0} in Ω. For $z \in \Omega$ define

$$
F(z)=\int_{\gamma} f(\zeta) d \zeta
$$

where γ is any path joining z_{0} to z.
For h and k non-zero real numbers, define paths γ_{h} and σ_{k} to be the horizontal and vertical paths with speed 1 from z to $z+h$ and z to $z+i k$ respectively. For example, if h is positive, γ_{h} is the map from $[0, h]$ to \mathbf{C} given by $t \mapsto t+h$, and if h is negative, γ_{h} is the map $t \mapsto t-h$ on $[0,-h]$. If $k>0, \sigma_{k}$ is the map $t \mapsto z+i t$ on $[0, k]$. In any case

$$
\frac{F(z+h)-F(z)}{h}=\frac{1}{h} \int_{\gamma_{h}} f(\zeta) d \zeta=\frac{1}{h} \int_{0}^{h} f(z+t) d t
$$

and

$$
\frac{F(z+i k)-F(z)}{k}=\frac{1}{k} \int_{\sigma_{k}} f(\zeta) d \zeta=\frac{i}{k} \int_{0}^{k} f(z+i t) d t
$$

If x and y are the standard co-ordinates along real and imaginary axes, letting the (real) variables h and k go to zero in the above identities and applying the (real) fundamental theorem of Calculus we obtain

$$
\frac{\partial F}{\partial x}(z)=f(z)
$$

and

$$
\frac{\partial F}{\partial y}(z)=i f(z)
$$

In other words F satisfies the Cauchy-Riemann equations. Morever, since f is continuous, F is C^{1}. By Theorem 3.1, F is analytic, whence $F^{\prime}=F_{x}=f$.

