LECTURE 19

Date of Lecture: March 15, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Continuing analytic functions across boundaries

1.1. Continuing across line segments. Suppose 2 is a region and L is a (non
empty) line segment {2 which is a closed subset €. It is immaterial whether L is a
closed line segment or an open line segment, or anything in between, e.g., L = (0, 1]
is a closed subset of Q = {z € C | Re(z) > 0}. Let @ = Q~ L. Suppose f: = C
is a continuous function such that f(z) is analytic on . If L is a singleton set, then
by the Riemann removable singularity theorem, f is analytic on 2. This remains
true even when L has positive length as the following argument shows.

First, without loss of generality, we may assume L is a horizontal line segment,
by applying the transformation z — e’z for a suitable real number @ on the region
Q. Let R be any (closed, bounded) rectangle in Q with sides parallel to the real
and imaginary axes. We claim that

f(z)dz =0.
OR
If L is part of one of edges of R, say the bottom edge, then for n > 0 let R,, be
the rectangle whose bottom edge is at a distance 7 from the bottom edge of R, and
whose right and left edges follow the right and left edges of R, until a distance 7
from the bottom edge of R, and whose top edge agrees with the top edge of R. The
length of the bottom edge of R equals that of the bottom edge of R,,. Let this be
denoted ¢. Then, with the bottom left corner of R being zg = a + b, we have
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Since f is uniformly continuous on the compact set R, given € > 0 we can find
1 > 0 such that
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For 7 satisfying (%) and (*x) we see that

a+¥t
(2)dz — f(2)dz) < / |f (@ +ib) = f(z +i(b+n))|de + 2nsup [f(2)|
AR OR,, a z€R
< gl+2swlfE)ln  (via (+)
zER
<€ (via (#:x)).
Thus

(z)dz = lim f(z)dz.
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But by Cauchy-Goursat faRn f(z)dz =0 for n > 0. Hence

f(z)dz=0
OR

in this case. The same argument works when L is part of the top horizontal line
segment of R.

Next if L intesects R, say at a+ i3, then we let o be the horizontal line segment
from a+iB to a + £+ iS3, and let Ry and Ry be the rectangles obtained from R by
dividing it along the horizontal line segment o. In this case

(2)dz = (2)dz + f(z)dz=0.
OR OR1 ORy

Finally, if L does not intersect R, then by the Cauchy-Goursat theorem we have
Jor f(2)dz = 0.

Thus in all cases we have faR f(z)dz = 0. Now if D is any open disc in €2, say
with centre a € 2, then we can find a primitive F' for f in D by defining F'(z) to
be the integral of f along the path which starts at a moves parallel to the real axis
first and then moves parallel to the imaginary axis to end at z. From the fact that
the integral of f along the boundary of any rectangle in Q (with edges parallel to
the axes) is zero, it is clear that F'(z) can also worked out by integrating f along a
path which starts at a, and moves first parallel to the imaginary axis and then along
an appropriate horizontal segment. Standard arguments, exactly as in the proof
of Cauchy-Goursat in a disc, show that F satisfies the Cauchy-Riemann equations
and is C! (in fact F, = f, F, = if as is easily verified). Hence F is analytic and
o its derivative is f. This means f is analytic on .
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1.2. Continuing past circular arcs. Suppose the closed set L in the previous
section is not a line segment but an arc of a circle C', and suppose f is continuous
on  and analytic on Q' = Q ~ L. Then too f is analytic on . That is worked
as follows. Let a € C. Consider Q* = Q \ {a} and L* = L ~ {}. The univalent
function z — (2 — a)~! on Q* transforms L* into a line segment. Hence applying
the previous argument, the function f(z) is holomorphic on Q*. If a ¢ Q we are
done. If not, then the Riemann removable singularity theorem applies and again f
is holomorphic on €.
The conclusions of the previous two subsections can be summarised as follows:

Proposition 1.2.1. Suppose Q is a region and L a closed subset of Q0 which is
either a line segment or a circular arc. If f: Q — C is a continuous function which
is holomorphic on Q0 . L then f is holomorphic on Q.

2. Harmonic functions and the averaging property

We know that if u is a harmonic function on a region {2 then u has the averaging
property, i.e.,
1

2
(2.1) u(a) = %/0 u(a + re®)dh

for all a € Q and all r > 0 such that the closed disc B(a,r) is contained in (2.
The converse is also true for continuous real-valued functions on Q with a local
averaging property, a notion which we define now.

Definition 2.1.1. A real-valued function u on € is said to have a local averaging
property if for each a € © we have a positive real number p(a) such that (2.1) is
true for all 0 < r < p(a).

We then have the following result

Theorem 2.2. Let Q be a region. A function u:  — R is harmonic if and only
if it is continuous and has the local averaging property.

It is clear that if w is harmonic it is continuous and has the local averaging
property. We will prove the converse in a later lecture.

3. Symmetric Regions and Schwarz’s Reflection Principle

3.1. Notations. Let h denote the open upper half-plane and h~ the open lower
half-plane. For a region 2 set Ot = QNp, Q- =QNph~, and O = {zeC|zeQ}.
If f: Q@ — Cis a map, let

f: VY
be the map given by

z— f(2).
Recall from Problem1 of HW 1 that f is holomorphic on 2 if and only if fA’ is
holomorphic on Q. Note that Q = Q and ]?: f.

Definition 3.1.1. A region €2 is said to be symmetric if 0=0.

Lemma 3.1.2. Suppose Q is a symmetric region, L a line segment of positive
length in QN R and f(z) a holomorphic function on Q which takes real values on
L. Then f = f.
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Proof. The functions f and fare both holomorphic on 2 and agree on L. By the
identity principle we are done. ([

3.2. Schwarz’s Reflection Principle. Here is a weak version of the principle.

Theorem 3.2.1 (Weak Schwarz’s Reflection Principle). Suppose 2 is a symmetric
region, {1 the set of points in Q) with non-negative imaginary parts, and L = QNR.
If f: Q1 — C is a continuous function that is holomorphic on Q7 and takes real
values on L, then f can be extended to a unique holomorphic function g on Q. The
extended function g satisfies the relation g = g.

Proof. Uniqueness of g follows from the identity principle. The identity g = g is a
direct consequence of Lemma 3.1.2. Existence is the only thing that remains to be
proved. Let g: © — C be defined by:

) = Ji(z), z € Qq,
9(2) {f(z), se0.

Note that ©Q; = QT U (2N R) and hence the above does define a function on .
A little thought shows that € is continuous on 2. Moreover it is holomorphic on
QN L=0"UQ". Hence by Proposition 1.2.1, the map g is holomorphic on all of
Q. O

The above version of Schwarz’s Reflection Principle is enough for most purposes
and is often called the Schwarz Reflection Principle. There is however a stronger
form whose proof is independent of the above proof.

Theorem 3.2.2 (Schwarz’s Reflection Principle). Let Q and Qy, L be as in the
hypothesis of Theorem 3.2.1. Let f: Qt — C be a holomorphic function such
that if x € L and {z,} is a sequence of points in Q* converging to x, then
lim, o Im(2,) = 0. Then [ can be extended to a unique holomorphic function
g on Q. The extended function g satisfies the relation g = g.

Proof. Let f = u+ iv be the decomposition of f into its real and imaginary parts.
Define v*: 0 — C by

v(z), 2€Qt,
v*(z) =<0, 2€QNR=0NR,
—v(z), z€Q".

It is easy to see that v* is continuous. We claim that v* has the local averaging
property on . Since v*|g+ = v, v* is harmonic on Q7 and hence has the averaging
property on Q. Further v*(z) = Im(f(z)) for z € Q7 and hence v* is harmonic on
Q™. In particular it has the averaging property there. Now suppose a € L. We can
find a positive real number p(a) such that the closed disc |z — a| < p(a) lies in Q.
Let D, = B(a,p(a)). It is easy to see that (2.1) is satisfied by v* for 0 < r < p(a).
Indeed a change of variables shows that fjﬂ v(a+re?)df = [ v(a+ re?)do,
whence (27)~1 fo% v*(a +re??)df = 0 = v*(a) for 0 < r < p(a). This proves the
claim. By Theorem 2.2 we see that v* is harmonic.

Let —u} be a harmonic conjugate of v* on D,, where a € L and D, is as above.
Then g, = u’ + iv* is holomorphic on D,. Moreover on D}, g, — f takes real
values and hence must be a real constant for it is not an open map. We can pick
our harmonic conjugate —u; in such a way that ¢, = 0. Then ga|D$ = flp,, and
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let us do so. Since D, is a symmetric region and g takeﬁ real values on D, NR, by
Lemma 3.1.2 we have g, = g,. It follows that g,(z) = f(z) for z € D .

By the identity principle, for a,b € L, go|p,np, = 9b|Da N Dp. If U = Uger Dy,
then from what we’ve seen, the g, patch to give a holomorphic function gy : U — C
such that gy agrees with f on QT N U and with fon Q- NU. Since f, gy, and
f agree on the intersections of their domains, one checks easily that they glue
to give a holomorphic function g on €. As before uniqueness follows from the
identity principle. The property g = g is true because g is real-valued on L (see
Lemma 3.1.2). O



