LECTURE 19

Date of Lecture: March 15, 2017

Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

1. Continuing analytic functions across boundaries

1.1. Continuing across line segments. Suppose Ω is a region and L is a (non empty) line segment Ω which is a closed subset Ω . It is immaterial whether L is a closed line segment or an open line segment, or anything in between, e.g., L = (0, 1] is a closed subset of $\Omega = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}$. Let $\Omega' = \Omega \setminus L$. Suppose $f \colon \Omega \to \mathbb{C}$ is a continuous function such that f(z) is analytic on Ω' . If L is a singleton set, then by the Riemann removable singularity theorem, f is analytic on Ω . This remains true even when L has positive length as the following argument shows.

First, without loss of generality, we may assume L is a horizontal line segment, by applying the transformation $z \mapsto e^{i\theta} z$ for a suitable real number θ on the region Ω . Let R be any (closed, bounded) rectangle in Ω with sides parallel to the real and imaginary axes. We claim that

$$\int_{\partial R} f(z)dz = 0.$$

If L is part of one of edges of R, say the bottom edge, then for $\eta > 0$ let R_{η} be the rectangle whose bottom edge is at a distance η from the bottom edge of R, and whose right and left edges follow the right and left edges of R, until a distance η from the bottom edge of R, and whose top edge agrees with the top edge of R. The length of the bottom edge of R equals that of the bottom edge of R_{η} . Let this be denoted ℓ . Then, with the bottom left corner of R being $z_0 = a + ib$, we have

$$\begin{split} \left| \int_{\partial R} f(z)dz - \int_{\partial R_{\eta}} f(z)dz \right| &= \left| \int_{a}^{a+\ell} f(x+ib)dx - \int_{a}^{a+\ell} f(x+i(b+\eta))dx \right| \\ &+ \left| \int_{b}^{b+\eta} f(a+\ell+iy)dy - \int_{b}^{b+\eta} f(a+iy)dy \right| \\ &= \int_{a}^{a+\ell} |f(x+ib) - f(x+i(b+\eta))|dx \\ &+ \int_{b}^{b+\eta} |f(a+\ell+iy) - f(a+iy)|dy \\ &\leq \int_{a}^{a+\ell} |f(x+ib) - f(x+i(b+\eta))|dx + 2\eta \sup_{z \in R} |f(z)| \end{split}$$

Since f is uniformly continuous on the compact set R, given $\epsilon > 0$ we can find $\eta > 0$ such that

(*)
$$|f(z) - f(w)| < \frac{\epsilon}{2\ell}$$
 $(z, w \in R, |z - w| < \eta),$

and such that

(**)
$$\eta < \frac{\epsilon}{4 \sup_{z \in R} |f(z)|}$$

For η satisfying (*) and (**) we see that

$$\begin{aligned} \left| \int_{\partial R} f(z)dz - \int_{\partial R_{\eta}} f(z)dz \right| &\leq \int_{a}^{a+\ell} |f(x+ib) - f(x+i(b+\eta))|dx + 2\eta \sup_{z \in R} |f(z)| \\ &< \frac{\epsilon}{2\ell}\ell + 2\sup_{z \in R} |f(z)|\eta \quad \text{(via } (\ast)) \\ &< \epsilon \quad \text{(via } (\ast\ast)). \end{aligned}$$

Thus

$$\int_{\partial R} f(z)dz = \lim_{\eta \to 0} \int_{\partial R_{\eta}} f(z)dz.$$

But by Cauchy-Goursat $\int_{\partial R_n} f(z) dz = 0$ for $\eta > 0$. Hence

$$\int_{\partial R} f(z) dz = 0$$

in this case. The same argument works when L is part of the top horizontal line segment of R.

Next if L intesects R, say at $\alpha + i\beta$, then we let σ be the horizontal line segment from $a + i\beta$ to $a + \ell + i\beta$, and let R_1 and R_2 be the rectangles obtained from R by dividing it along the horizontal line segment σ . In this case

$$\int_{\partial R} f(z)dz = \int_{\partial R_1} f(z)dz + \int_{\partial R_2} f(z)dz = 0.$$

Finally, if L does not intersect R, then by the Cauchy-Goursat theorem we have $\int_{\partial R} f(z) dz = 0.$

Thus in all cases we have $\int_{\partial R} f(z)dz = 0$. Now if D is any open disc in Ω , say with centre $a \in \Omega$, then we can find a primitive F for f in D by defining F(z) to be the integral of f along the path which starts at a moves parallel to the real axis first and then moves parallel to the imaginary axis to end at z. From the fact that the integral of f along the boundary of any rectangle in Ω (with edges parallel to the axes) is zero, it is clear that F(z) can also worked out by integrating f along a path which starts at a, and moves first parallel to the imaginary axis and then along an appropriate horizontal segment. Standard arguments, exactly as in the proof of Cauchy-Goursat in a disc, show that F satisfies the Cauchy-Riemann equations and is C^1 (in fact $F_x = f$, $F_y = if$ as is easily verified). Hence F is analytic and so its derivative is f. This means f is analytic on Ω . 1.2. Continuing past circular arcs. Suppose the closed set L in the previous section is not a line segment but an arc of a circle C, and suppose f is continuous on Ω and analytic on $\Omega' = \Omega \setminus L$. Then too f is analytic on Ω . That is worked as follows. Let $a \in C$. Consider $\Omega^* = \Omega \setminus \{a\}$ and $L^* = L \setminus \{\}$. The univalent function $z \mapsto (z-a)^{-1}$ on Ω^* transforms L^* into a line segment. Hence applying the previous argument, the function f(z) is holomorphic on Ω^* . If $a \notin \Omega$ we are done. If not, then the Riemann removable singularity theorem applies and again f is holomorphic on Ω .

The conclusions of the previous two subsections can be summarised as follows:

Proposition 1.2.1. Suppose Ω is a region and L a closed subset of Ω which is either a line segment or a circular arc. If $f: \Omega \to \mathbf{C}$ is a continuous function which is holomorphic on $\Omega \setminus L$ then f is holomorphic on Ω .

2. Harmonic functions and the averaging property

We know that if u is a harmonic function on a region Ω then u has the averaging property, i.e.,

(2.1)
$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta$$

for all $a \in \Omega$ and all r > 0 such that the closed disc $\overline{B}(a, r)$ is contained in Ω .

The converse is also true for continuous real-valued functions on Ω with a *local* averaging property, a notion which we define now.

Definition 2.1.1. A real-valued function u on Ω is said to have a *local averaging* property if for each $a \in \Omega$ we have a positive real number $\rho(a)$ such that (2.1) is true for all $0 < r \le \rho(a)$.

We then have the following result

Theorem 2.2. Let Ω be a region. A function $u: \Omega \to \mathbf{R}$ is harmonic if and only if it is continuous and has the local averaging property.

It is clear that if u is harmonic it is continuous and has the local averaging property. We will prove the converse in a later lecture.

3. Symmetric Regions and Schwarz's Reflection Principle

3.1. Notations. Let \mathfrak{h} denote the open upper half-plane and \mathfrak{h}^- the open lower half-plane. For a region Ω set $\Omega^+ = \Omega \cap \mathfrak{h}$, $\Omega^- = \Omega \cap \mathfrak{h}^-$, and $\widehat{\Omega} = \{z \in \mathbf{C} \mid \overline{z} \in \Omega\}$. If $f: \Omega \to \mathbf{C}$ is a map, let

$$\widehat{f}:\widehat{\Omega}\to\mathbf{C}$$

be the map given by

$$z \mapsto \overline{f(\bar{z})}$$

Recall from Problem 1 of HW 1 that f is holomorphic on Ω if and only if \hat{f} is holomorphic on $\hat{\Omega}$. Note that $\hat{\widehat{\Omega}} = \Omega$ and $\hat{f} = f$.

Definition 3.1.1. A region Ω is said to be *symmetric* if $\widehat{\Omega} = \Omega$.

Lemma 3.1.2. Suppose Ω is a symmetric region, L a line segment of positive length in $\Omega \cap \mathbf{R}$ and f(z) a holomorphic function on Ω which takes real values on L. Then $f = \hat{f}$.

Proof. The functions f and \hat{f} are both holomorphic on Ω and agree on L. By the identity principle we are done.

3.2. Schwarz's Reflection Principle. Here is a weak version of the principle.

Theorem 3.2.1 (Weak Schwarz's Reflection Principle). Suppose Ω is a symmetric region, Ω_1 the set of points in Ω with non-negative imaginary parts, and $L = \Omega \cap \mathbf{R}$. If $f: \Omega_1 \to \mathbf{C}$ is a continuous function that is holomorphic on Ω^+ and takes real values on L, then f can be extended to a unique holomorphic function g on Ω . The extended function g satisfies the relation $g = \hat{g}$.

Proof. Uniqueness of g follows from the identity principle. The identity $g = \hat{g}$ is a direct consequence of Lemma 3.1.2. Existence is the only thing that remains to be proved. Let $g: \Omega \to \mathbf{C}$ be defined by:

$$g(z) = \begin{cases} f(z), & z \in \Omega_1, \\ \widehat{f}(z), & z \in \Omega^-. \end{cases}$$

Note that $\Omega_1 = \Omega^+ \cup (\Omega \cap \mathbf{R})$ and hence the above does define a function on Ω . A little thought shows that Ω is continuous on Ω . Moreover it is holomorphic on $\Omega \setminus L = \Omega^+ \cup \Omega^-$. Hence by Proposition 1.2.1, the map g is holomorphic on all of Ω .

The above version of Schwarz's Reflection Principle is enough for most purposes and is often called the Schwarz Reflection Principle. There is however a stronger form whose proof is independent of the above proof.

Theorem 3.2.2 (Schwarz's Reflection Principle). Let Ω and Ω_1 , L be as in the hypothesis of Theorem 3.2.1. Let $f: \Omega^+ \to \mathbf{C}$ be a holomorphic function such that if $x \in L$ and $\{z_n\}$ is a sequence of points in Ω^+ converging to x, then $\lim_{n\to\infty} \operatorname{Im}(z_n) = 0$. Then f can be extended to a unique holomorphic function g on Ω . The extended function g satisfies the relation $g = \hat{g}$.

Proof. Let f = u + iv be the decomposition of f into its real and imaginary parts. Define $v^* \colon \Omega \to \mathbf{C}$ by

$$v^*(z) = \begin{cases} v(z), & z \in \Omega^+, \\ 0, & z \in \Omega \cap \mathbf{R} = \Omega_1 \cap \mathbf{R}, \\ -v(\bar{z}), & z \in \Omega^-. \end{cases}$$

It is easy to see that v^* is continuous. We claim that v^* has the local averaging property on Ω . Since $v^*|_{\Omega^+} = v$, v^* is harmonic on Ω^+ , and hence has the averaging property on Ω^+ . Further $v^*(z) = \operatorname{Im}(\widehat{f}(z))$ for $z \in \Omega^-$, and hence v^* is harmonic on Ω^- . In particular it has the averaging property there. Now suppose $a \in L$. We can find a positive real number $\rho(a)$ such that the closed disc $|z-a| \leq \rho(a)$ lies in Ω . Let $D_a = B(a, \rho(a))$. It is easy to see that (2.1) is satisfied by v^* for $0 < r < \rho(a)$. Indeed a change of variables shows that $\int_{\pi}^{2\pi} v(a + re^{-i\theta})d\theta = \int_{0}^{\pi} v(a + re^{i\theta})d\theta$, whence $(2\pi)^{-1} \int_{0}^{2\pi} v^*(a + re^{i\theta})d\theta = 0 = v^*(a)$ for $0 < r \leq \rho(a)$. This proves the claim. By Theorem 2.2 we see that v^* is harmonic.

Let $-u_a^*$ be a harmonic conjugate of v^* on D_a , where $a \in L$ and D_a is as above. Then $g_a = u_a^* + iv^*$ is holomorphic on D_a . Moreover on D_a^+ , $g_a - f$ takes real values and hence must be a real constant for it is not an open map. We can pick our harmonic conjugate $-u_a^*$ in such a way that $c_a = 0$. Then $g_a|_{D_a^+} = f|_{D_a}$, and let us do so. Since D_a is a symmetric region and g takes real values on $D_a \cap \mathbf{R}$, by

Lemma 3.1.2 we have $\widehat{g_a} = g_a$. It follows that $g_a(z) = \widehat{f}(z)$ for $z \in D_a^-$. By the identity principle, for $a, b \in L$, $g_a|_{D_a \cap D_b} = g_b|_{D_a} \cap D_b$. If $U = \bigcup_{a \in L} D_a$, then from what we've seen, the g_a patch to give a holomorphic function $g_U : U \to \mathbb{C}$ such that g_U agrees with f on $\Omega^+ \cap U$ and with \widehat{f} on $\Omega^- \cap U$. Since f, g_U , and $\widehat{\widehat{f}}(z) = \widehat{f}(z)$. \widehat{f} agree on the intersections of their domains, one checks easily that they glue to give a holomorphic function g on Ω . As before uniqueness follows from the identity principle. The property $\hat{g} = g$ is true because g is real-valued on L (see Lemma 3.1.2).