LECTURE 19

Date of Lecture: March 15, 2017

Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

1. Continuing analytic functions across boundaries

1.1. Continuing across line segments. Suppose Ω is a region and L is a (non empty) line segment Ω which is a closed subset Ω. It is immaterial whether L is a closed line segment or an open line segment, or anything in between, e.g., $L=(0,1]$ is a closed subset of $\Omega=\{z \in \mathbf{C} \mid \operatorname{Re}(z)>0\}$. Let $\Omega^{\prime}=\Omega \backslash L$. Suppose $f: \Omega \rightarrow \mathbf{C}$ is a continuous function such that $f(z)$ is analytic on Ω^{\prime}. If L is a singleton set, then by the Riemann removable singularity theorem, f is analytic on Ω. This remains true even when L has positive length as the following argument shows.

First, without loss of generality, we may assume L is a horizontal line segment, by applying the transformation $z \mapsto e^{i \theta} z$ for a suitable real number θ on the region Ω. Let R be any (closed, bounded) rectangle in Ω with sides parallel to the real and imaginary axes. We claim that

$$
\int_{\partial R} f(z) d z=0
$$

If L is part of one of edges of R, say the bottom edge, then for $\eta>0$ let R_{η} be the rectangle whose bottom edge is at a distance η from the bottom edge of R, and whose right and left edges follow the right and left edges of R, until a distance η from the bottom edge of R, and whose top edge agrees with the top edge of R. The length of the bottom edge of R equals that of the bottom edge of R_{η}. Let this be denoted ℓ. Then, with the bottom left corner of R being $z_{0}=a+i b$, we have

$$
\begin{aligned}
\left|\int_{\partial R} f(z) d z-\int_{\partial R_{\eta}} f(z) d z\right|= & \left|\int_{a}^{a+\ell} f(x+i b) d x-\int_{a}^{a+\ell} f(x+i(b+\eta)) d x\right| \\
& +\left|\int_{b}^{b+\eta} f(a+\ell+i y) d y-\int_{b}^{b+\eta} f(a+i y) d y\right| \\
= & \int_{a}^{a+\ell}|f(x+i b)-f(x+i(b+\eta))| d x \\
& +\int_{b}^{b+\eta}|f(a+\ell+i y)-f(a+i y)| d y \\
\leq & \int_{a}^{a+\ell}|f(x+i b)-f(x+i(b+\eta))| d x+2 \eta \sup _{z \in R}|f(z)|
\end{aligned}
$$

Since f is uniformly continuous on the compact set R, given $\epsilon>0$ we can find $\eta>0$ such that

$$
\begin{equation*}
|f(z)-f(w)|<\frac{\epsilon}{2 \ell} \quad(z, w \in R,|z-w|<\eta) \tag{*}
\end{equation*}
$$

and such that

$$
\begin{equation*}
\eta<\frac{\epsilon}{4 \sup _{z \in R}|f(z)|} \tag{**}
\end{equation*}
$$

For η satisfying ($*$) and ($* *$) we see that

$$
\begin{aligned}
\left|\int_{\partial R} f(z) d z-\int_{\partial R_{\eta}} f(z) d z\right| & \leq \int_{a}^{a+\ell}|f(x+i b)-f(x+i(b+\eta))| d x+2 \eta \sup _{z \in R}|f(z)| \\
& <\frac{\epsilon}{2 \ell} \ell+2 \sup _{z \in R}|f(z)| \eta \quad(\text { via }(*)) \\
& <\epsilon
\end{aligned}
$$

Thus

$$
\int_{\partial R} f(z) d z=\lim _{\eta \rightarrow 0} \int_{\partial R_{\eta}} f(z) d z
$$

But by Cauchy-Goursat $\int_{\partial R_{\eta}} f(z) d z=0$ for $\eta>0$. Hence

$$
\int_{\partial R} f(z) d z=0
$$

in this case. The same argument works when L is part of the top horizontal line segment of R.

Next if L intesects R, say at $\alpha+i \beta$, then we let σ be the horizontal line segment from $a+i \beta$ to $a+\ell+i \beta$, and let R_{1} and R_{2} be the rectangles obtained from R by dividing it along the horizontal line segment σ. In this case

$$
\int_{\partial R} f(z) d z=\int_{\partial R_{1}} f(z) d z+\int_{\partial R_{2}} f(z) d z=0
$$

Finally, if L does not intersect R, then by the Cauchy-Goursat theorem we have $\int_{\partial R} f(z) d z=0$.

Thus in all cases we have $\int_{\partial R} f(z) d z=0$. Now if D is any open disc in Ω, say with centre $a \in \Omega$, then we can find a primitive F for f in D by defining $F(z)$ to be the integral of f along the path which starts at a moves parallel to the real axis first and then moves parallel to the imaginary axis to end at z. From the fact that the integral of f along the boundary of any rectangle in Ω (with edges parallel to the axes) is zero, it is clear that $F(z)$ can also worked out by integrating f along a path which starts at a, and moves first parallel to the imaginary axis and then along an appropriate horizontal segment. Standard arguments, exactly as in the proof of Cauchy-Goursat in a disc, show that F satisfies the Cauchy-Riemann equations and is C^{1} (in fact $F_{x}=f, F_{y}=i f$ as is easily verified). Hence F is analytic and so its derivative is f. This means f is analytic on Ω.
1.2. Continuing past circular arcs. Suppose the closed set L in the previous section is not a line segment but an arc of a circle C, and suppose f is continuous on Ω and analytic on $\Omega^{\prime}=\Omega \backslash L$. Then too f is analytic on Ω. That is worked as follows. Let $a \in C$. Consider $\Omega^{*}=\Omega \backslash\{a\}$ and $L^{*}=L \backslash\{ \}$. The univalent function $z \mapsto(z-a)^{-1}$ on Ω^{*} transforms L^{*} into a line segment. Hence applying the previous argument, the function $f(z)$ is holomorphic on Ω^{*}. If $a \notin \Omega$ we are done. If not, then the Riemann removable singularity theorem applies and again f is holomorphic on Ω.

The conclusions of the previous two subsections can be summarised as follows:
Proposition 1.2.1. Suppose Ω is a region and L a closed subset of Ω which is either a line segment or a circular arc. If $f: \Omega \rightarrow \mathbf{C}$ is a continuous function which is holomorphic on $\Omega \backslash L$ then f is holomorphic on Ω.

2. Harmonic functions and the averaging property

We know that if u is a harmonic function on a region Ω then u has the averaging property, i.e.,

$$
\begin{equation*}
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i \theta}\right) d \theta \tag{2.1}
\end{equation*}
$$

for all $a \in \Omega$ and all $r>0$ such that the closed disc $\bar{B}(a, r)$ is contained in Ω.
The converse is also true for continuous real-valued functions on Ω with a local averaging property, a notion which we define now.

Definition 2.1.1. A real-valued function u on Ω is said to have a local averaging property if for each $a \in \Omega$ we have a positive real number $\rho(a)$ such that (2.1) is true for all $0<r \leq \rho(a)$.

We then have the following result
Theorem 2.2. Let Ω be a region. A function $u: \Omega \rightarrow \mathbf{R}$ is harmonic if and only if it is continuous and has the local averaging property.

It is clear that if u is harmonic it is continuous and has the local averaging property. We will prove the converse in a later lecture.

3. Symmetric Regions and Schwarz's Reflection Principle

3.1. Notations. Let \mathfrak{h} denote the open upper half-plane and \mathfrak{h}^{-}the open lower half-plane. For a region Ω set $\Omega^{+}=\Omega \cap \mathfrak{h}, \Omega^{-}=\Omega \cap \mathfrak{h}^{-}$, and $\widehat{\Omega}=\{z \in \mathbf{C} \mid \bar{z} \in \Omega\}$. If $f: \Omega \rightarrow \mathbf{C}$ is a map, let

$$
\widehat{f}: \widehat{\Omega} \rightarrow \mathbf{C}
$$

be the map given by

$$
z \mapsto \overline{f(\bar{z})}
$$

Recall from Problem 1 of HW 1 that f is holomorphic on Ω if and only if \widehat{f} is holomorphic on $\widehat{\Omega}$. Note that $\widehat{\widehat{\Omega}}=\Omega$ and $\widehat{\widehat{f}}=f$.
Definition 3.1.1. A region Ω is said to be symmetric if $\widehat{\Omega}=\Omega$.
Lemma 3.1.2. Suppose Ω is a symmetric region, L a line segment of positive length in $\Omega \cap \mathbf{R}$ and $f(z)$ a holomorphic function on Ω which takes real values on L. Then $f=\widehat{f}$.

Proof. The functions f and \widehat{f} are both holomorphic on Ω and agree on L. By the identity principle we are done.
3.2. Schwarz's Reflection Principle. Here is a weak version of the principle.

Theorem 3.2.1 (Weak Schwarz's Reflection Principle). Suppose Ω is a symmetric region, Ω_{1} the set of points in Ω with non-negative imaginary parts, and $L=\Omega \cap \mathbf{R}$. If $f: \Omega_{1} \rightarrow \mathbf{C}$ is a continuous function that is holomorphic on Ω^{+}and takes real values on L, then f can be extended to a unique holomorphic function g on Ω. The extended function g satisfies the relation $g=\widehat{g}$.
Proof. Uniqueness of g follows from the identity principle. The identity $g=\widehat{g}$ is a direct consequence of Lemma 3.1.2. Existence is the only thing that remains to be proved. Let $g: \Omega \rightarrow \mathbf{C}$ be defined by:

$$
g(z)= \begin{cases}f(z), & z \in \Omega_{1} \\ \widehat{f}(z), & z \in \Omega^{-}\end{cases}
$$

Note that $\Omega_{1}=\Omega^{+} \cup(\Omega \cap \mathbf{R})$ and hence the above does define a function on Ω. A little thought shows that Ω is continuous on Ω. Moreover it is holomorphic on $\Omega \backslash L=\Omega^{+} \cup \Omega^{-}$. Hence by Proposition 1.2.1, the map g is holomorphic on all of Ω.

The above version of Schwarz's Reflection Principle is enough for most purposes and is often called the Schwarz Reflection Principle. There is however a stronger form whose proof is independent of the above proof.

Theorem 3.2.2 (Schwarz's Reflection Principle). Let Ω and Ω_{1}, L be as in the hypothesis of Theorem 3.2.1. Let $f: \Omega^{+} \rightarrow \mathbf{C}$ be a holomorphic function such that if $x \in L$ and $\left\{z_{n}\right\}$ is a sequence of points in Ω^{+}converging to x, then $\lim _{n \rightarrow \infty} \operatorname{Im}\left(z_{n}\right)=0$. Then f can be extended to a unique holomorphic function g on Ω. The extended function g satisfies the relation $g=\widehat{g}$.
Proof. Let $f=u+i v$ be the decomposition of f into its real and imaginary parts. Define $v^{*}: \Omega \rightarrow \mathbf{C}$ by

$$
v^{*}(z)= \begin{cases}v(z), & z \in \Omega^{+} \\ 0, & z \in \Omega \cap \mathbf{R}=\Omega_{1} \cap \mathbf{R} \\ -v(\bar{z}), & z \in \Omega^{-}\end{cases}
$$

It is easy to see that v^{*} is continuous. We claim that v^{*} has the local averaging property on Ω. Since $\left.v^{*}\right|_{\Omega^{+}}=v, v^{*}$ is harmonic on Ω^{+}, and hence has the averaging property on Ω^{+}. Further $v^{*}(z)=\operatorname{Im}(\widehat{f}(z))$ for $z \in \Omega^{-}$, and hence v^{*} is harmonic on Ω^{-}. In particular it has the averaging property there. Now suppose $a \in L$. We can find a positive real number $\rho(a)$ such that the closed disc $|z-a| \leq \rho(a)$ lies in Ω. Let $D_{a}=B(a, \rho(a))$. It is easy to see that (2.1) is satisfied by v^{*} for $0<r<\rho(a)$. Indeed a change of variables shows that $\int_{\pi}^{2 \pi} v\left(a+r e^{-i \theta}\right) d \theta=\int_{0}^{\pi} v\left(a+r e^{i \theta}\right) d \theta$, whence $(2 \pi)^{-1} \int_{0}^{2 \pi} v^{*}\left(a+r e^{i \theta}\right) d \theta=0=v^{*}(a)$ for $0<r \leq \rho(a)$. This proves the claim. By Theorem 2.2 we see that v^{*} is harmonic.

Let $-u_{a}^{*}$ be a harmonic conjugate of v^{*} on D_{a}, where $a \in L$ and D_{a} is as above. Then $g_{a}=u_{a}^{*}+i v^{*}$ is holomorphic on D_{a}. Moreover on $D_{a}^{+}, g_{a}-f$ takes real values and hence must be a real constant for it is not an open map. We can pick our harmonic conjugate $-u_{a}^{*}$ in such a way that $c_{a}=0$. Then $\left.g_{a}\right|_{D_{a}^{+}}=\left.f\right|_{D_{a}}$, and
let us do so. Since D_{a} is a symmetric region and g takes real values on $D_{a} \cap \mathbf{R}$, by Lemma 3.1.2 we have $\widehat{g_{a}}=g_{a}$. It follows that $g_{a}(z)=\widehat{f}(z)$ for $z \in D_{a}^{-}$.

By the identity principle, for $a, b \in L,\left.g_{a}\right|_{D_{a} \cap D_{b}}=g_{b} \mid D_{a} \cap D_{b}$. If $U=\cup_{a \in L} D_{a}$, then from what we've seen, the g_{a} patch to give a holomorphic function $g_{U}: U \rightarrow \mathbf{C}$ such that g_{U} agrees with f on $\Omega^{+} \cap U$ and with \widehat{f} on $\Omega^{-} \cap U$. Since f, g_{U}, and \widehat{f} agree on the intersections of their domains, one checks easily that they glue to give a holomorphic function g on Ω. As before uniqueness follows from the identity principle. The property $\widehat{g}=g$ is true because g is real-valued on L (see Lemma 3.1.2).

