
LECTURE 19

Date of Lecture: March 15, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Continuing analytic functions across boundaries

1.1. Continuing across line segments. Suppose Ω is a region and L is a (non
empty) line segment Ω which is a closed subset Ω. It is immaterial whether L is a
closed line segment or an open line segment, or anything in between, e.g., L = (0, 1]
is a closed subset of Ω = {z ∈ C | Re(z) > 0}. Let Ω′ = ΩrL. Suppose f : Ω→ C
is a continuous function such that f(z) is analytic on Ω′. If L is a singleton set, then
by the Riemann removable singularity theorem, f is analytic on Ω. This remains
true even when L has positive length as the following argument shows.

First, without loss of generality, we may assume L is a horizontal line segment,
by applying the transformation z 7→ eiθz for a suitable real number θ on the region
Ω. Let R be any (closed, bounded) rectangle in Ω with sides parallel to the real
and imaginary axes. We claim that∫

∂R

f(z)dz = 0.

If L is part of one of edges of R, say the bottom edge, then for η > 0 let Rη be
the rectangle whose bottom edge is at a distance η from the bottom edge of R, and
whose right and left edges follow the right and left edges of R, until a distance η
from the bottom edge of R, and whose top edge agrees with the top edge of R. The
length of the bottom edge of R equals that of the bottom edge of Rη. Let this be
denoted `. Then, with the bottom left corner of R being z0 = a+ ib, we have∣∣∣∣∣
∫
∂R

f(z)dz −
∫
∂Rη

f(z)dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ a+`

a

f(x+ ib)dx−
∫ a+`

a

f(x+ i(b+ η))dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ b+η

b

f(a+ `+ iy)dy −
∫ b+η

b

f(a+ iy)dy

∣∣∣∣∣
=

∫ a+`

a

|f(x+ ib)− f(x+ i(b+ η))|dx

+

∫ b+η

b

|f(a+ `+ iy)− f(a+ iy)|dy

≤
∫ a+`

a

|f(x+ ib)− f(x+ i(b+ η))|dx+ 2η sup
z∈R
|f(z)|
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Since f is uniformly continuous on the compact set R, given ε > 0 we can find
η > 0 such that

(∗) |f(z)− f(w)| < ε

2`
(z, w ∈ R, |z − w| < η),

and such that

(∗∗) η <
ε

4 supz∈R |f(z)|
.

For η satisfying (∗) and (∗∗) we see that∣∣∣∣∣
∫
∂R

f(z)dz −
∫
∂Rη

f(z)dz

∣∣∣∣∣ ≤
∫ a+`

a

|f(x+ ib)− f(x+ i(b+ η))|dx+ 2η sup
z∈R
|f(z)|

<
ε

2`
`+ 2 sup

z∈R
|f(z)|η (via (∗))

< ε (via (∗∗)).

Thus ∫
∂R

f(z)dz = lim
η→0

∫
∂Rη

f(z)dz.

But by Cauchy-Goursat
∫
∂Rη

f(z)dz = 0 for η > 0. Hence∫
∂R

f(z)dz = 0

in this case. The same argument works when L is part of the top horizontal line
segment of R.

Next if L intesects R, say at α+ iβ, then we let σ be the horizontal line segment
from a+ iβ to a+ `+ iβ, and let R1 and R2 be the rectangles obtained from R by
dividing it along the horizontal line segment σ. In this case∫

∂R

f(z)dz =

∫
∂R1

f(z)dz +

∫
∂R2

f(z)dz = 0.

Finally, if L does not intersect R, then by the Cauchy-Goursat theorem we have∫
∂R
f(z)dz = 0.

Thus in all cases we have
∫
∂R
f(z)dz = 0. Now if D is any open disc in Ω, say

with centre a ∈ Ω, then we can find a primitive F for f in D by defining F (z) to
be the integral of f along the path which starts at a moves parallel to the real axis
first and then moves parallel to the imaginary axis to end at z. From the fact that
the integral of f along the boundary of any rectangle in Ω (with edges parallel to
the axes) is zero, it is clear that F (z) can also worked out by integrating f along a
path which starts at a, and moves first parallel to the imaginary axis and then along
an appropriate horizontal segment. Standard arguments, exactly as in the proof
of Cauchy-Goursat in a disc, show that F satisfies the Cauchy-Riemann equations
and is C1 (in fact Fx = f , Fy = if as is easily verified). Hence F is analytic and
so its derivative is f . This means f is analytic on Ω.
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1.2. Continuing past circular arcs. Suppose the closed set L in the previous
section is not a line segment but an arc of a circle C, and suppose f is continuous
on Ω and analytic on Ω′ = Ω r L. Then too f is analytic on Ω. That is worked
as follows. Let a ∈ C. Consider Ω∗ = Ω r {a} and L∗ = L r {}. The univalent
function z 7→ (z − a)−1 on Ω∗ transforms L∗ into a line segment. Hence applying
the previous argument, the function f(z) is holomorphic on Ω∗. If a /∈ Ω we are
done. If not, then the Riemann removable singularity theorem applies and again f
is holomorphic on Ω.

The conclusions of the previous two subsections can be summarised as follows:

Proposition 1.2.1. Suppose Ω is a region and L a closed subset of Ω which is
either a line segment or a circular arc. If f : Ω→ C is a continuous function which
is holomorphic on Ω r L then f is holomorphic on Ω.

2. Harmonic functions and the averaging property

We know that if u is a harmonic function on a region Ω then u has the averaging
property, i.e.,

(2.1) u(a) =
1

2π

∫ 2π

0

u(a+ reiθ)dθ

for all a ∈ Ω and all r > 0 such that the closed disc B(a, r) is contained in Ω.
The converse is also true for continuous real-valued functions on Ω with a local

averaging property, a notion which we define now.

Definition 2.1.1. A real-valued function u on Ω is said to have a local averaging
property if for each a ∈ Ω we have a positive real number ρ(a) such that (2.1) is
true for all 0 < r ≤ ρ(a).

We then have the following result

Theorem 2.2. Let Ω be a region. A function u : Ω → R is harmonic if and only
if it is continuous and has the local averaging property.

It is clear that if u is harmonic it is continuous and has the local averaging
property. We will prove the converse in a later lecture.

3. Symmetric Regions and Schwarz’s Reflection Principle

3.1. Notations. Let h denote the open upper half-plane and h− the open lower

half-plane. For a region Ω set Ω+ = Ω∩ h, Ω− = Ω∩ h−, and Ω̂ = {z ∈ C | z̄ ∈ Ω}.
If f : Ω→ C is a map, let

f̂ : Ω̂→ C

be the map given by
z 7→ f(z̄).

Recall from Problem 1 of HW 1 that f is holomorphic on Ω if and only if f̂ is

holomorphic on Ω̂. Note that
̂̂
Ω = Ω and

̂̂
f = f .

Definition 3.1.1. A region Ω is said to be symmetric if Ω̂ = Ω.

Lemma 3.1.2. Suppose Ω is a symmetric region, L a line segment of positive
length in Ω ∩R and f(z) a holomorphic function on Ω which takes real values on

L. Then f = f̂ .
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Proof. The functions f and f̂ are both holomorphic on Ω and agree on L. By the
identity principle we are done. �

3.2. Schwarz’s Reflection Principle. Here is a weak version of the principle.

Theorem 3.2.1 (Weak Schwarz’s Reflection Principle). Suppose Ω is a symmetric
region, Ω1 the set of points in Ω with non-negative imaginary parts, and L = Ω∩R.
If f : Ω1 → C is a continuous function that is holomorphic on Ω+ and takes real
values on L, then f can be extended to a unique holomorphic function g on Ω. The
extended function g satisfies the relation g = ĝ.

Proof. Uniqueness of g follows from the identity principle. The identity g = ĝ is a
direct consequence of Lemma 3.1.2. Existence is the only thing that remains to be
proved. Let g : Ω→ C be defined by:

g(z) =

{
f(z), z ∈ Ω1,

f̂(z), z ∈ Ω−.

Note that Ω1 = Ω+ ∪ (Ω ∩ R) and hence the above does define a function on Ω.
A little thought shows that Ω is continuous on Ω. Moreover it is holomorphic on
Ω r L = Ω+ ∪Ω−. Hence by Proposition 1.2.1, the map g is holomorphic on all of
Ω. �

The above version of Schwarz’s Reflection Principle is enough for most purposes
and is often called the Schwarz Reflection Principle. There is however a stronger
form whose proof is independent of the above proof.

Theorem 3.2.2 (Schwarz’s Reflection Principle). Let Ω and Ω1, L be as in the
hypothesis of Theorem 3.2.1. Let f : Ω+ → C be a holomorphic function such
that if x ∈ L and {zn} is a sequence of points in Ω+ converging to x, then
limn→∞ Im(zn) = 0. Then f can be extended to a unique holomorphic function
g on Ω. The extended function g satisfies the relation g = ĝ.

Proof. Let f = u+ iv be the decomposition of f into its real and imaginary parts.
Define v∗ : Ω→ C by

v∗(z) =


v(z), z ∈ Ω+,

0, z ∈ Ω ∩R = Ω1 ∩R,

−v(z̄), z ∈ Ω−.

It is easy to see that v∗ is continuous. We claim that v∗ has the local averaging
property on Ω. Since v∗|Ω+ = v, v∗ is harmonic on Ω+, and hence has the averaging

property on Ω+. Further v∗(z) = Im(f̂(z)) for z ∈ Ω−, and hence v∗ is harmonic on
Ω−. In particular it has the averaging property there. Now suppose a ∈ L. We can
find a positive real number ρ(a) such that the closed disc |z − a| ≤ ρ(a) lies in Ω.
Let Da = B(a, ρ(a)). It is easy to see that (2.1) is satisfied by v∗ for 0 < r < ρ(a).

Indeed a change of variables shows that
∫ 2π

π
v(a + re−iθ)dθ =

∫ π
0
v(a + reiθ)dθ,

whence (2π)−1
∫ 2π

0
v∗(a + reiθ)dθ = 0 = v∗(a) for 0 < r ≤ ρ(a). This proves the

claim. By Theorem 2.2 we see that v∗ is harmonic.
Let −u∗a be a harmonic conjugate of v∗ on Da, where a ∈ L and Da is as above.

Then ga = u∗a + iv∗ is holomorphic on Da. Moreover on D+
a , ga − f takes real

values and hence must be a real constant for it is not an open map. We can pick
our harmonic conjugate −u∗a in such a way that ca = 0. Then ga|D+

a
= f |Da , and
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let us do so. Since Da is a symmetric region and g takes real values on Da ∩R, by

Lemma 3.1.2 we have ĝa = ga. It follows that ga(z) = f̂(z) for z ∈ D−a .
By the identity principle, for a, b ∈ L, ga|Da∩Db = gb|Da ∩Db. If U = ∪a∈LDa,

then from what we’ve seen, the ga patch to give a holomorphic function gU : U → C

such that gU agrees with f on Ω+ ∩ U and with f̂ on Ω− ∩ U . Since f , gU , and

f̂ agree on the intersections of their domains, one checks easily that they glue
to give a holomorphic function g on Ω. As before uniqueness follows from the
identity principle. The property ĝ = g is true because g is real-valued on L (see
Lemma 3.1.2). �
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