LECTURE 18

Date of Lecture: March 13, 2017

Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

1. The Riemann Mapping Theorem

Let Δ denote the unit disc around $0 \in \mathbb{C}$. Last lecture (Lecture 17) we showed the following (see Lemma 2.2.1 of *loc.cit.*):

Let U be a simply connected open subset of Δ such that $0 \in U$ and $U \neq \Delta$. Then there exists a univalent function $f: U \to \Delta$ such that f(0) = 0 and |f'(0)| > 1.

A little thought shows that if f in the above has maximal derivative (in absolute value) at 0 amongst all univalent functions on U taking values in Δ which take 0 to 0, then $f(U) = \Delta$. In other words if f in the result in italics above is such $|f'(0) = \sup_g |g'(0)|$, where the supremum is taken over univalent maps $g: U \to \Delta$ with g(0) = 0, then $f(U) = \Delta$. If not, then we have a univalent map $h: f(U) \to \Delta$ with h(0) = 0 and |h'(0)| > 1. Then $g = h \circ f$ is such that g is univalent on U, g(0) = 0 and |g'(0)| > |f'(0)|, a contradiction. This leads us to the question, is there a f as in Lemma 2.2.1 of Lecture 17 with maximal possible derivative (in absolute value) at 0? This an example of an extremal problem. We examine a slightly more general problem in the subsection that follows.

1.1. An Exremal Problem. We fix a simply connected region Ω such that $\Omega \neq \mathbf{C}$, as well a point $z_0 \in \Omega$. Set

 $\mathscr{F} = \{ f \colon \Omega \to \Delta \mid f \text{ is univalent} \}.$

The extremal problem we pose is: Show there exists $f \in \mathscr{F}$ such that $f'(z_0) > 0$ and if $g \in \mathscr{F}$ then $|g'(z_0)| \leq f'(z_0)$.

Any solution of this extremal problem is called a Riemann mapping for Ω at z_0 . As we will see a solution exists and it is unique. First let us observe the following.

Lemma 1.1.1. Suppose V is a simply connected region of **C** such that $0 \notin V$. Let $g_i: V \to \mathbf{C}, i = 1, 2$ be the two branches of the square root function V (which exist because of our hypotheses on V). Then $g_1(V) \cap g_2(V) = \emptyset$.

Proof. Suppose $c \in g_1(V) \cap g_2(V)$. Then $c = g_1(a)$ and $c = g_2(b)$ for some a and b in V. Squaring, we see that $a = c^2 = b$. Thus $g_1(a) = g_2(a)$, i.e., $g_1(a) = -g_1(a)$. This means $g_1(a) = 0$, whence upon squaring a = 0, contradicting the fact that $0 \notin V$.

1.1.2. Solution to the Extremal Problem. Let us first show that $\mathscr{F} \neq \emptyset$. Let $a \in \mathbb{C} \setminus \Omega$. Then h(z) = z - a is nowhere vanishing and univalent on Ω . Let $V = h(\Omega)$. Then V is simply connected and $0 \notin V$. Hence if $\varphi \colon V \to \mathbb{C}$ is a branch of \sqrt{z} on V, then by Lemma 1.1.1, $\varphi(V) \cap (-\varphi)(V) = set$. Let D be disc of radius ρ in $(-\varphi)(V)$ centred at $w_0 \in (-\varphi)(V)$. Then, clearly $z - w_0 > \rho$ for all $z \in V = h(\Omega)$. It follows that $\psi(z) = \rho/(z - w_0)$ is univalent map on $\varphi(V)$ which takes values in Δ . If $H(z) = \psi \circ \varphi \circ h$, then H is univalent on Ω and takes values in Δ . Thus $H \in \mathscr{F}$, whence $\mathscr{F} \neq \emptyset$.

Let $M = \sup_{f \in \mathscr{F}} |f'(z_0)|$. Note that if $\varepsilon > 0$ is so small that the disc $|z - z_0| \le \varepsilon$ lies in Ω , then we have

$$|f'(z_0)| = \frac{1}{2\pi} \left| \int_{|z-z_0|=\varepsilon} \frac{f(\zeta)}{(\zeta-z_0)^2} d\zeta \right| \le \frac{1}{2\pi} \frac{1}{\varepsilon^2} (2\pi\varepsilon) \le \frac{1}{\varepsilon}, \qquad (f \in \mathscr{F}).$$

Thus $M < \infty$. We can find a sequence $\{f_n\}$ in \mathscr{F} such that $\{|f'(z_0)|\}$ converges to M. Since \mathscr{F} is locally bounded, in fact it is globally bounded by 1 since its members take values in Δ , by Montel's Theorem $\{f_n\}$ has a convergent subsequence $\{f_{n_k}\}$ which converges uniformly on compact sets. Let $f = \lim k \to \infty f_{n_k}$. Then we know that $f \in \mathscr{H}(\Omega)$. Since each f_{n_k} is univalent, by Hurwitz's Theorem, either f is a constant or it is univalent. Further, we know that $f'_{n_k} \to f'$ uniformly on compact sets as $k \to \infty$. This means $|f'(z_0)| = M > 0$. This means f cannot be a constant. Hence f is univalent. It clearly takes values in Δ .

We claim $f(z_0) = 0$. Suppose $f(z_0) = b$. Note $b \in \Delta$. Consider the function $\Phi_b(z) = \frac{z-b}{1-\overline{b}z}$. Then $\Phi_b \circ f \in \mathscr{F}$, and $(\Phi_b \circ f)(z_0) = 0$. Moreover, $\Phi'_b(b) = 0$. $\frac{1}{1-|b|^2}$. Hence we have

$$\frac{M}{1-|b|^2} = |\Phi_b'(b)||M| = |\Phi_b'(b)||f'(z_0)| = |(\Phi_b \circ f)(z_0)| \le M,$$

giving,

$$\frac{1}{1-|b|^2} \le 1.$$

The above inequality implies b = 0 since we know |b| < 1. Thus $f(z_0) = 0$ and $|f'(z_0)| = M$. It follows that $f'(z_0) = e^{i\theta}M$ for some real θ . Replacing f by $e^{-i\theta}f$ if necessary, we see that f solves the Extremal Problem.

Lemma 1.1.2. Let f be the solution to the above Extremal problem. Then $f(\Omega) =$ Δ .

Proof. If not, then $U = f(\Omega)$ is a simply connected region in Δ which is not equal to Δ , whence we have a univalent map $g: U \to \Delta$ such that |g'(0)| > 1. The composite $q \circ f$ is in \mathscr{F} and $|(q \circ f)'(0)| > |f'(0)|$, a contradicton.

1.2. The Riemann Mapping Theorem. Here is the statement

Theorem 1.2.1 (The Riemann Mapping Theorem). Let Ω be a simply connected region such that $\Omega \neq \mathbf{C}$, and let z_0 be a point in Ω . Then there exists a unique *univalent* onto *map*

 $f: \Omega \to \Delta$

such that $f(z_0) = 0$ and $f'(z_0) > 0$.

Remark: Note that f as in the Theorem gives us a biholomorphism between Ω and Δ . In particular, Ω and Δ are homeomorphic, whence Ω is classically simply connected.

Proof. We have already seen the existence of such an f (see Lemma 1.1.2 to see that the solution to the extremal problem in the last subsection maps Ω surjective on to Δ). It only remains to prove uniqueness. So suppose g is another biholomorphism from Ω to Δ which vanishes at z_0 and such that $g'(z_0) > 0$. Then by Schwarz's Lemma there exists $\theta \in \mathbf{R}$ such that $(f \circ g^{-1})(z) = e^{i\theta}z$. Now $e^{i\theta} = (f \circ g^{-1})'(0) = f'(0)/g'(0) > 0$. Hence $e^{\theta} = 1$, whence f = g.

Corollary 1.2.2. A region Ω is classically simply connected if and only if it is simply connected.

Proof. We have seen earlier in the course that classically simply connected regions are simply connected. The Riemann Mapping Theorem gives the converse (the case $\Omega = \mathbf{C}$ is trivially classically simply connected).