
LECTURE 18

Date of Lecture: March 13, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. The Riemann Mapping Theorem

Let ∆ denote the unit disc around 0 ∈ C. Last lecture (Lecture 17) we showed
the following (see Lemma 2.2.1 of loc.cit.):

Let U be a simply connected open subset of ∆ such that 0 ∈ U and U 6= ∆. Then
there exists a univalent function f : U → ∆ such that f(0) = 0 and |f ′(0)| > 1.

A little thought shows that if f in the above has maximal derivative (in absolute
value) at 0 amongst all univalent functions on U taking values in ∆ which take
0 to 0, then f(U) = ∆. In other words if f in the result in italics above is such
|f ′(0) = supg |g′(0)|, where the supremum is taken over univalent maps g : U → ∆
with g(0) = 0, then f(U) = ∆. If not, then we have a univalent map h : f(U)→ ∆
with h(0) = 0 and |h′(0)| > 1. Then g = h ◦f is such that g is univalent on U ,
g(0) = 0 and |g′(0)| > |f ′(0)|, a contradiction. This leads us to the question, is there
a f as in Lemma 2.2.1 of Lecture 17 with maximal possible derivative (in absolute
value) at 0? This an example of an extremal problem. We examine a slightly more
general problem in the subsection that follows.

1.1. An Exremal Problem. We fix a simply connected region Ω such that Ω 6= C,
as well a point z0 ∈ Ω. Set

F = {f : Ω→ ∆ | f is univalent}.
The extremal problem we pose is: Show there exists f ∈ F such that f ′(z0) > 0
and if g ∈ F then |g′(z0)| ≤ f ′(z0).

Any solution of this extremal problem is called a Riemann mapping for Ω at z0.
As we will see a solution exists and it is unique. First let us observe the following.

Lemma 1.1.1. Suppose V is a simply connected region of C such that 0 /∈ V . Let
gi : V → C, i = 1, 2 be the two branches of the square root function V (which exist
because of our hypotheses on V ). Then g1(V ) ∩ g2(V ) = ∅.

Proof. Suppose c ∈ g1(V ) ∩ g2(V ). Then c = g1(a) and c = g2(b) for some a and b
in V . Squaring, we see that a = c2 = b. Thus g1(a) = g2(a), i.e., g1(a) = −g1(a).
This means g1(a) = 0, whence upon squaring a = 0, contradicting the fact that
0 /∈ V . �

1.1.2. Solution to the Extremal Problem. Let us first show that F 6= ∅. Let a ∈
CrΩ. Then h(z) = z−a is nowhere vanishing and univalent on Ω. Let V = h(Ω).
Then V is simply connected and 0 /∈ V . Hence if ϕ : V → C is a branch of

√
z

on V , then by Lemma 1.1.1, ϕ(V ) ∩ (−ϕ)(V ) = set. Let D be disc of radius ρ in
(−ϕ)(V ) centred at w0 ∈ (−ϕ)(V ). Then, clearly z −w0 > ρ for all z ∈ V = h(Ω).
It follows that ψ(z) = ρ/(z−w0) is univalent map on ϕ(V ) which takes values in ∆.

1



If H(z) = ψ ◦ϕ ◦h, then H is univalent on Ω and takes values in ∆. Thus H ∈ F ,
whence F 6= ∅.

Let M = supf∈F |f ′(z0)|. Note that if ε > 0 is so small that the disc |z− z0| ≤ ε
lies in Ω, then we have

|f ′(z0)| = 1

2π

∣∣∣∣∣
∫
|z−z0|=ε

f(ζ)

(ζ − z0)2
dζ

∣∣∣∣∣ ≤ 1

2π

1

ε2
(2πε) ≤ 1

ε
, (f ∈ F ).

Thus M <∞. We can find a sequence {fn} in F such that {|f ′(z0)|} converges to
M . Since F is locally bounded, in fact it is globally bounded by 1 since its members
take values in ∆, by Montel’s Theorem {fn} has a convergent subsequence {fnk

}
which converges uniformly on compact sets. Let f = lim k →∞fnk

. Then we know
that f ∈ H (Ω). Since each fnk

is univalent, by Hurwitz’s Theorem, either f is a
constant or it is univalent. Further, we know that f ′nk

→ f ′ uniformly on compact
sets as k →∞. This means |f ′(z0)| = M > 0. This means f cannot be a constant.
Hence f is univalent. It clearly takes values in ∆.

We claim f(z0) = 0. Suppose f(z0) = b. Note b ∈ ∆. Consider the function

Φb(z) =
z − b
1− b̄z

. Then Φb ◦f ∈ F , and (Φb ◦f)(z0) = 0. Moroever, Φ′b(b) =

1

1− |b|2
. Hence we have

M

1− |b|2
= |Φ′b(b)||M | = |Φ′b(b)||f ′(z0)| = |(Φb ◦f)(z0)| ≤M,

giving,
1

1− |b|2
≤ 1.

The above inequality implies b = 0 since we know |b| < 1. Thus f(z0) = 0 and
|f ′(z0)| = M . It follows that f ′(z0) = eiθM for some real θ. Replacing f by e−iθf
if necessary, we see that f solves the Extremal Problem.

Lemma 1.1.2. Let f be the solution to the above Extremal problem. Then f(Ω) =
∆.

Proof. If not, then U = f(Ω) is a simply connected region in ∆ which is not equal
to ∆, whence we have a univalent map g : U → ∆ such that |g′(0)| > 1. The
composite g ◦f is in F and |(g ◦f)′(0)| > |f ′(0)|, a contradicton. �

1.2. The Riemann Mapping Theorem. Here is the statement

Theorem 1.2.1 (The Riemann Mapping Theorem). Let Ω be a simply connected
region such that Ω 6= C, and let z0 be a point in Ω. Then there exists a unique
univalent onto map

f : Ω→ ∆

such that f(z0) = 0 and f ′(z0) > 0.

Remark: Note that f as in the Theorem gives us a biholomorphism between Ω
and ∆. In particular, Ω and ∆ are homeomorphic, whence Ω is classically simply
connected.

Proof. We have already seen the existence of such an f (see Lemma 1.1.2 to see that
the solution to the extremal problem in the last subsection maps Ω surjective on to
∆). It only remains to prove uniqueness. So suppose g is another biholomorphism
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from Ω to ∆ which vanishes at z0 and such that g′(z0) > 0. Then by Schwarz’s
Lemma there exists θ ∈ R such that (f ◦ g−1)(z) = eiθz. Now eiθ = (f ◦ g−1)′(0) =
f ′(0)/g′(0) > 0. Hence eθ = 1, whence f = g. �

Corollary 1.2.2. A region Ω is classically simply connected if and only if it is
simply connected.

Proof. We have seen earlier in the course that classically simply connected regions
are simply connected. The Riemann Mapping Theorem gives the converse (the case
Ω = C is trivially classically simply connected). �
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