
LECTURE 17

Date of Lecture: March 8, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Hurwitz’s Theorem and consequences

1.1. Uniform convergence of derivatives. Let Ω be a region and suppose fn →
f as n → ∞ uniformly on compact subsets of Ω with each fn holomorphic on Ω.
We have seen, via an application of Morera’s theorem, that f is holomorphic. What
about the convergence of the derivatives f ′n? It turns out that f ′n → f ′ uniformly
on compact sets.

Lemma 1.1.1. Let {fn} be a sequence in H (Ω) converging uniformly on compact
subsets of Ω to f ∈ H (Ω). Then {f ′n} converges uniformly on compact subsets of
Ω to f ′.

Proof. It is enough to prove that f ′n → f ′ (as n → ∞) on compact subsets of Ω
of the form K = B(a, r). We can find R > r such that B(a,R) ⊂ Ω, because the
distance from K to C ⊂ Ω is greater than 0. Thus K ⊂ B(a,R). Let C be the
bounding circle of B(a,R). We have

(∗) f ′n(z)− f ′(z) =
1

2πi

∫
C

fn(ζ)− f(ζ)

(ζ − z)2
dζ (z ∈ K).

Given η > 0 we have Nη ≥ 1 such that |fn(ζ) − f(ζ)| < η for all z ∈ K and all
n ≥ Nη. From (∗) we get for z ∈ K and n ≥ Nη

|f ′n(z)− f ′(z)| ≤ 1

2π

∫
C

|fn(ζ)− f(ζ)|
|ζ − z|2

|dζ|

<
1

2π

η

(R− r)2
(2πR)

=
Rη

(R− r)2
.

Thus given ε > 0 and picking η = (R − r)2ε/R we see that there exists N ≥ 1
(choose N = Nη) such that

|f ′n(z)− f ′(z)| < ε, (z ∈ K, n ≥ N)

giving the required result. �

1.2. Hurwitz’s Theorem. Recall that a one-to-one holomorphic function is called
univalent. The German word schlicht is also used. Our interest is as much in
Hurwitz’s theorem regarding the convergence of nowhere vanishing holomorphic
functions, as on its important corollary regarding the convergence of univalent
functions.
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Theorem 1.2.1 (Hurwitz’s Theorem). Let Ω be a region and {fn} a sequence of
nowhere vanishing holomorphic functions on Ω converging uniformly on compact
subsets of Ω to a function f . Then either f is identically zero on Ω or it is nowhere
vanishing on Ω.

Proof. Suppose f is not identically zero. Then its zeros are isolated. Let a ∈ Ω.
We can find a disc Da = B(a, r) in Ω such that Da ⊂ Ω and the bounding circle C
of Da does not contain any zeros of f . By Cauchy’s Theorem (or by the Argument
Principle) we have

(†)
∫
C

f ′n(z)

fn(z)
dz = 0 (n ∈ N).

Let

m := inf
ζ∈C
|f(ζ)|.

Since C is compact and f does not vanish on C there exists, we see that m > 0.
Next let

M := max{sup
ζ∈C
|f |, sup

ζ∈C
|f ′|}.

Since {fn} converges to f uniformly on C and {f ′n} converges to f ′ uniformly on C
we have an integer N ≥ 1 such that |fn(z)| > m/2, |fn(z)| < 2M , and |f ′n(z)| < 2M
for n ≥ N and z ∈ C. We therefore have∣∣∣∣∣f ′n(z)

fn(z)
− f ′(z)

f(z)

∣∣∣∣∣ ≤
∣∣∣∣∣f(z)f ′n(z)− f ′(z)fn(z)

fn(z)f(z)

∣∣∣∣∣ ≤ 8
M2

m2
(z ∈ C).

The Dominated Covergence Theorem can now be used to give, via (†),∫
C

f ′(z)

f(z)
dz = lim

n→∞

∫
C

f ′n(z)

fn(z)
dz = 0.

By the Argument Principle, it follows that f(z) is nowhere vanshing on Da. Since
Da’s cover Ω, we are done. �

Corollary 1.2.2. Suppose {fn} is a sequence of univalent functions on a region Ω
which converges uniformly on compact subsets of Ω to a function f . Then either f
is a constant function or f is univalent.

Proof. Suppose f is not constant. Then f ′ is not identically zero. Since {f ′n} is
sequence of nowhere vanishing holomorphic functions converging uniformly on com-
pact subsets of Ω to f ′, by Hurwitz’s theorem this means f ′ is nowhere vanishing.
Let z0 ∈ Ω and let Ω′ = Ωr{z0}. Set hn(z) = fn(z)−f(z0) and h(z) = f(z)−f(z0).
Then hn is nowhere vanishing on Ω′ and converges uniformly on compact subsets
of Ω′ to h. So either h is identically zero or it is nowhere vanishing via another
application of Hurwitz’s theorem. Now h′ = f ′|Ω′ and f ′ is nowhere vanishing.
Since h′ 6= 0, the function h cannot be identically zero as we just argued. This
means f(z) 6= f(z0) if z 6= z0, whence f is univalent. �

2. Revisiting Schwarz’s Lemma

The main point of this section is to understand the failure of Schwarz’s Lemma
when the hypothesis is weakened to allow holomorphic functions from an open
subset of B(0, 1) to B(0, 1).
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2.1. Simple connectedness and univalent maps. To what extent is simple
connectedness preserved under a univalent map? Recall that if Ω is a region and
f : Ω→ C is univalent then as f is non-constant (on any open subset of Ω) it is an
open map. In particular it defines a homeomorphism from Ω to f(Ω). Moreover,
the inverse map g : f(Ω) → Ω is necessarily holomorphic. One way to see this is
via problem 6 (b) and (c) of HW 6. Equivalently, the inverse-function theorem for
smooth maps tells us that the (several real variables) derivative of g, is the 2 × 2

matrix 1
|f ′|2 ( vy −uy

−vx ux
). By Cauchy-Riemann this is of the form ( a b

−b a ), whence by

Lemma 2.1.3 of Lecture 14-15 we see that g is conformal, whence it is holomorphic
(see Proposition 2.2.3 of loc.cit.). Thus the univalent map f gives us a biholomor-
phism f : Ω → f(Ω). It therefore seems reasonable to expect f(Ω) to be simply
connected if Ω is, and the following result shows that this is indeed so.

Lemma 2.1.1. Let ϕ : Ω→ C be a univalent map on a simply connected region Ω.
Then the image ϕ(Ω) is a simply connected region.

Proof. It is clear that V := ϕ(Ω) is a region, since it a non-empty open set which
must be connected. Let ψ : V → Ω be the inverse of ϕ. As we just saw (above
the statement of the Lemma), ψ is holomorphic. According to Theorem 3.2.1 of
Lecture 12-13, a region U is simply connected if and only if every holomorphic
function on it has a primitive. To that end, let g : V → C be a holomorphic
function on V = f(Ω). We have to show g has a primitive. Let f = g ◦ϕ. On Ω we
have the holomorphic function p(z) = f(z)ϕ′(z). Since Ω is simply connected the
function p(z) has a primitive, say F (z), on Ω. Define G = F ◦ψ. Then

G′(w) = F ′(ψ(w))ψ′(w) = f(ψ(w))ϕ′(ψ(w))ψ′(w)

= g(w)(ϕ ◦ψ)′(w)

= g(w).

Thus g has a primitive, namely G. �

2.2. Univalent functions on open subsets of ∆. Throughout, ∆ will denote
B(0, 1), the unit disc centred at 0. The bounding circle {|z| = 1} will be denoted
C.

Recall that if b ∈ ∆ then the map

Φb(z) :=
z − b
1− b̄z

is bi-holomorphic on the compact set ∆ and Φb(C) = C. The inverse of Φb on ∆
is Φ−b as is easily verified.

Here is the main result.

Lemma 2.2.1. Let U be a simply connected open subset of ∆ such that 0 ∈ U and
U 6= ∆. Then there exists a univalent function f : U → ∆ such that f(0) = 0 and
|f ′(0)| > 1.

Remark: Compare this to the Schwarz’s Lemma.

Proof. Since U 6= ∆ we can find b ∈ ∆, such that b /∈ U . Then Φb is nowhere
vanishing on U , and hence U1 := Φb(U) is simply connected by Lemma 2.1.1. Note
that −b = Φb(0) lies in U1. Since U1 is simply connected and does not contain 0,
one can has a branch of

√
z on U1 (see Problem 4 (c) of HW 6). Let g : U1 → ∆
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be such a branch, and let us agree to write
√
z for g(z) when z ∈ U1. Note that

g ◦Φb(0) =
√
−b. Moreover g is univalent on U1 for if g(d) = g(e) then

√
d =
√
e,

whence upon squaring, we get d = e. Let U2 = g(U1). Let V = Φ−
√
−b(U2) and set

f = Φ√−b ◦ g ◦Φb.

Then f : U → ∆ is univalent, f(0) = 0, f(U) = V .
Next suppose

Ψ: ∆→ ∆

is the map given by
Ψ:= Φ−b ◦h ◦Φ−

√
−b

where h : ∆→ ∆ is the map z 7→ z2. Then it is easy to see that

• Ψ(V ) = U ,
• f ◦ (Ψ|V )(w) = w for all w ∈ V , and
• Ψ ◦f(z) = z for all z ∈ U .

Note that Ψ(0) = 0 so that Ψ satisfies the hypotheses of Scharz’s Lemma. However,
since h is not one-to-one on ∆, Ψ is not one-to-one on ∆. This means

(∗∗) |Ψ′(0)| < 1

(otherwise |Ψ′(0)| = 1 and by Schwarz’s Lemma, Ψ would be one-to-one). The
chain rule for differentiation gives us

1 =

∣∣∣∣∣dzdz |z=0

∣∣∣∣∣ = |(Ψ ◦f)′(0)| = |Ψ′(f(0))||f ′(0)| = |Ψ′(0)||f ′(0)|

whence by (∗∗) we get
|f ′(0) = |Ψ′(0)|−1 > 1.

�
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