
LECTURE 16

Date of Lecture: March 6, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Topology on the space of holomorphic functions

Last time we showed that if a non-empty family of holomorphic functions on a
region is locally bounded then it is uniformly equicontinuous on compact subsets
of that region. The two notions are actually equivalent, and equivalent to a few
other related notions. It is most convenient to work with a topology (coming from
a metric) on the space of holomorphic functions on a region.

1.1. The space H (Ω). Suppose Ω is a region. Let H (Ω) denote the space of holo-
morphic functions on Ω. For each compact subset K of Ω and each f ∈ H (Ω) let
us write ‖f‖K for the supremum of |f | on K. (In other words ‖f‖K = ‖(f |K)‖∞.)
For each n ∈ N, define a compact set Kn by

Kn := {z ∈ Ω | |z| ≤ n, dist(z, C r Ω) ≥ 1/n}.

Then one checks easily that

• K1 ⊂ K2 ⊂ . . .Kn ⊂ Kn+1 ⊂ . . . , and
•
⋃∞

n=1Kn = Ω,
• if K is a compact subset of Ω then K ⊂ Kn for some n ≥ 1.

A sequence of compact sets {Kn} satisfying the above three properties is called an
exhaustion of Ω by compact subsets. Let ‖f‖n = ‖f‖Kn for n ∈ N and f ∈ H (Ω).
Define a metric d on H (Ω) as follows:

(1.1.1) d(f, g) :=
∞∑

n=1

1

2n
‖f − g‖n

1 + ‖f − g‖n
(f, g ∈H (Ω)).

We have the following

Lemma 1.1.2. The metric space (H (Ω), d) is complete. A sequence {fn} in H (Ω)
converges with respect to the metric d if and only if it converges uniformly on
compact subsets of Ω.

Proof. We will first prove that convergence in (H (Ω), d) implies uniform conver-
gence on compact sets.

Let {fk} be a convergent sequence in (H (Ω), d). Say it converges to f ∈H (Ω).
We will show fk → f as k → infty uniformly on each Kn. Since every compact set
is contained in some Kn, this will show that {fk} converges uniformly on compact
sets tof . Fix n ∈ N. Given ε > 0 we can find N ∈ N such that

d(fk, f) <
1

2n
ε

1 + ε
(l, k ≥ N).
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From (1.1.1) it follows that

1

2n
‖fk − f‖n

1 + ‖fk − f‖n
≤ 1

2n
ε

1 + ε
(k ≥ N).

It follows that
‖fk − f‖n < ε (k ≥ N).

Thus {fk} converges uniformly to f on Kn.
The above proof, with obvious modifications, also shows that if {fk} is Cauchy

in (H (Ω), d), then it is Cauchy in C(K) for each compact subset K of Ω where
C(K) is the space of continuous functions on K with supremum norm ‖ · ‖K .

Now suppose {fk} converges uniformly on compact subsets on Ω. Let f be the
limiting function. Recall f must belong to H (Ω) in this case. Let ε > 0 be given.
Let n0 ∈ N be chosen such that

∑
n = n0 + 1∞2−n < ε/2. Since fk → f uniformly

onKn0 therefore there exists N ≥ 1 such that ‖fk − f‖n0 < 2ε/(1 − 2ε) for all
k ≥ N . In fact, since Kn ⊂ Kn0

for all n ≤ n0, we have ‖fk − f‖n < 2ε/(1 − 2ε)
for all k ≥ N . Thus if k ≥ N we have

d(fk, f) <

n0∑
n=1

1

2n
‖fk − f‖n

1 + ‖fk − f‖n
+
ε

2

<

n0∑
n=1

1

2n
ε

2
+
ε

2

= ε.

The same proof with obvious modifications also shows that if {fn} is Cauchy in
each C(K), with K compact in Ω, then it is Cauchy in (H (Ω), d). This proves the
Lemma. �

The following is known as Montel’s Theorem1.

Theorem 1.1.3 (Montel’s Theorem). Let Ω be a region and F a non-empty subset
of H (Ω). The following are equivalent:

(a) F is locally bounded.
(b) F is locally bounded and uniformly equicontinuous on compact subsets of

Ω.
(c) Every sequence in F has a subsequence which converges uniformly on com-

pact sets.
(d) Every sequence in F has a subsequence which converges in (H (Ω), d).

(e) The closure F of F in (H (Ω), d) is compact.

Proof. We have already proven (a)⇒(b). Lemma 1.1.2 yields (c)⇔ (d)⇔ (e).
We will now prove (b)⇒ (c). For K a compact subset of Ω let us write F |K

for the collection {f |K}f∈F . Let K be a compact subset of Ω. Suppose (b) is
true. According to Arzela-Ascoli this is equivalent to saying F |K is relatively
compact in (C(K), ‖ · ‖K), i.e., the closure of F |K in C(K) is compact. It follows
that every sequence in F has a subsequence (depending upon the compact set K)
which converges uniformly on K. Let {fn} be a sequence in F . Let {Kl}∞l=1 be the
exhaustion of Ω by compact subsets that we introduced earlier (to define the metric
d). Let {gn,1} be a subsequence of {fn} such that {gn,1} converges uniformly on
K1. For j ≥ 1, we recursively define {gn,j+1} to be a subsequence of {gn,j} such

1More precisely (a)⇔(c) is what is traditionally known as Montel’s Theorem.

2



that {gn,j+1} converges uniformly on Kj+1. Set fnk
= gk,k. One checks easily that

{fnk
} is a subsequence of {fn} which converges uniformly on each Kj , whence on

each compact subset of Ω. Thus (c) is true.
Finally we show that (c)⇒ (a). Suppose F satisfies (c) and let K be a compact

subset of Ω. The condition (c) is equivalent to saying that the closure of F |K in
(C(K), ‖ · ‖K) is compact. This means F |K is bounded (in fact totally bounded)
in (C(K), ‖ · ‖K), and hence there exists MK <∞ such that ‖f‖K < MK for every
f ∈ F . In other words F satisfies (a). �

Definition 1.1.4 (Normal Families). Let Ω be a region. A non-empty family F
of holomorphic functions on Ω is said to be a normal family 2 if it satisfies any of
the equivalent conditions of Theorem 1.1.3.

2Traditionally, the definition is reserved for F satisfying (c) of Montel’s Theorem.
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