LECTURE 16

Date of Lecture: March 6, 2017

Some of the proofs here are elaborations and cleaner expositions of what was given in class. Others are a quick summary.

1. Topology on the space of holomorphic functions

Last time we showed that if a non-empty family of holomorphic functions on a region is locally bounded then it is uniformly equicontinuous on compact subsets of that region. The two notions are actually equivalent, and equivalent to a few other related notions. It is most convenient to work with a topology (coming from a metric) on the space of holomorphic functions on a region.

1.1. The space $\mathscr{H}(\Omega)$. Suppose Ω is a region. Let $\mathscr{H}(\Omega)$ denote the space of holomorphic functions on Ω . For each compact subset K of Ω and each $f \in \mathscr{H}(\Omega)$ let us write $||f||_K$ for the supremum of |f| on K. (In other words $||f||_K = ||(f|_K)||_{\infty}$.) For each $n \in \mathbb{N}$, define a compact set K_n by

$$K_n := \{ z \in \Omega \mid |z| \le n, \operatorname{dist}(z, \mathbf{C} \setminus \Omega) \ge 1/n \}.$$

Then one checks easily that

- $K_1 \subset K_2 \subset \ldots K_n \subset K_{n+1} \subset \ldots$, and
- $\bigcup_{n=1}^{\infty} K_n = \Omega,$
- if K is a compact subset of Ω then $K \subset K_n$ for some $n \ge 1$.

A sequence of compact sets $\{K_n\}$ satisfying the above three properties is called an *exhaustion of* Ω *by compact subsets.* Let $||f||_n = ||f||_{K_n}$ for $n \in \mathbb{N}$ and $f \in \mathscr{H}(\Omega)$. Define a metric d on $\mathscr{H}(\Omega)$ as follows:

(1.1.1)
$$d(f,g) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|f-g\|_n}{1+\|f-g\|_n} \qquad (f,g \in \mathscr{H}(\Omega))$$

We have the following

Lemma 1.1.2. The metric space $(\mathcal{H}(\Omega), d)$ is complete. A sequence $\{f_n\}$ in $\mathcal{H}(\Omega)$ converges with respect to the metric d if and only if it converges uniformly on compact subsets of Ω .

Proof. We will first prove that convergence in $(\mathcal{H}(\Omega), d)$ implies uniform convergence on compact sets.

Let $\{f_k\}$ be a convergent sequence in $(\mathscr{H}(\Omega), d)$. Say it converges to $f \in \mathscr{H}(\Omega)$. We will show $f_k \to f$ as $k \to infty$ uniformly on each K_n . Since every compact set is contained in some K_n , this will show that $\{f_k\}$ converges uniformly on compact sets to f. Fix $n \in \mathbb{N}$. Given $\epsilon > 0$ we can find $N \in \mathbb{N}$ such that

$$d(f_k, f) < \frac{1}{2^n} \frac{\epsilon}{1+\epsilon} \qquad (l, k \ge N).$$

From (1.1.1) it follows that

$$\frac{1}{2^n} \frac{\|f_k - f\|_n}{1 + \|f_k - f\|_n} \le \frac{1}{2^n} \frac{\epsilon}{1 + \epsilon} \qquad (k \ge N).$$

It follows that

$$||f_k - f||_n < \epsilon \qquad (k \ge N).$$

Thus $\{f_k\}$ converges uniformly to f on K_n .

The above proof, with obvious modifications, also shows that if $\{f_k\}$ is Cauchy in $(\mathscr{H}(\Omega), d)$, then it is Cauchy in C(K) for each compact subset K of Ω where C(K) is the space of continuous functions on K with supremum norm $\|\cdot\|_{K}$.

Now suppose $\{f_k\}$ converges uniformly on compact subsets on Ω . Let f be the limiting function. Recall f must belong to $\mathscr{H}(\Omega)$ in this case. Let $\epsilon > 0$ be given. Let $n_0 \in \mathbb{N}$ be chosen such that $\sum n = n_0 + 1^{\infty} 2^{-n} < \epsilon/2$. Since $f_k \to f$ uniformly on K_{n_0} therefore there exists $N \geq 1$ such that $||f_k - f||_{n_0} < 2\epsilon/(1 - 2\epsilon)$ for all $k \geq N$. In fact, since $K_n \subset K_{n_0}$ for all $n \leq n_0$, we have $||f_k - f||_n < 2\epsilon/(1 - 2\epsilon)$ for all $k \geq N$. Thus if $k \geq N$ we have

$$d(f_k, f) < \sum_{n=1}^{n_0} \frac{1}{2^n} \frac{\|f_k - f\|_n}{1 + \|f_k - f\|_n} + \frac{\epsilon}{2}$$

$$< \sum_{n=1}^{n_0} \frac{1}{2^n} \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

The same proof with obvious modifications also shows that if $\{f_n\}$ is Cauchy in each C(K), with K compact in Ω , then it is Cauchy in $(\mathscr{H}(\Omega), d)$. This proves the Lemma.

The following is known as Montel's Theorem¹.

Theorem 1.1.3 (Montel's Theorem). Let Ω be a region and \mathscr{F} a non-empty subset of $\mathscr{H}(\Omega)$. The following are equivalent:

- (a) \mathscr{F} is locally bounded.
- (b) \mathscr{F} is locally bounded and uniformly equicontinuous on compact subsets of Ω .
- (c) Every sequence in \mathscr{F} has a subsequence which converges uniformly on compact sets.
- (d) Every sequence in \mathscr{F} has a subsequence which converges in $(\mathscr{H}(\Omega), d)$.
- (e) The closure $\overline{\mathscr{F}}$ of \mathscr{F} in $(\mathscr{H}(\Omega), d)$ is compact.

Proof. We have already proven (a) \Rightarrow (b). Lemma 1.1.2 yields (c) \Leftrightarrow (d) \Leftrightarrow (e).

We will now prove (b) \Rightarrow (c). For K a compact subset of Ω let us write $\mathscr{F}|_K$ for the collection $\{f|_K\}_{f\in\mathscr{F}}$. Let K be a compact subset of Ω . Suppose (b) is true. According to Arzela-Ascoli this is equivalent to saying $\mathscr{F}|_K$ is relatively compact in $(C(K), \|\cdot\|_K)$, i.e., the closure of $\mathscr{F}|_K$ in C(K) is compact. It follows that every sequence in \mathscr{F} has a subsequence (depending upon the compact set K) which converges uniformly on K. Let $\{f_n\}$ be a sequence in \mathscr{F} . Let $\{K_l\}_{l=1}^{\infty}$ be the exhaustion of Ω by compact subsets that we introduced earlier (to define the metric d). Let $\{g_{n,1}\}$ be a subsequence of $\{f_n\}$ such that $\{g_{n,1}\}$ converges uniformly on K_1 . For $j \geq 1$, we recursively define $\{g_{n,j+1}\}$ to be a subsequence of $\{g_{n,j}\}$ such

¹More precisely (a) \Leftrightarrow (c) is what is traditionally known as Montel's Theorem.

that $\{g_{n,j+1}\}$ converges uniformly on K_{j+1} . Set $f_{n_k} = g_{k,k}$. One checks easily that $\{f_{n_k}\}$ is a subsequence of $\{f_n\}$ which converges uniformly on each K_j , whence on each compact subset of Ω . Thus (c) is true.

Finally we show that $(c) \Rightarrow (a)$. Suppose \mathscr{F} satisfies (c) and let K be a compact subset of Ω . The condition (c) is equivalent to saying that the closure of $\mathscr{F}|_K$ in $(C(K), \|\cdot\|_K)$ is compact. This means $\mathscr{F}|_K$ is bounded (in fact totally bounded) in $(C(K), \|\cdot\|_K)$, and hence there exists $M_K < \infty$ such that $\|f\|_K < M_K$ for every $f \in \mathscr{F}$. In other words \mathscr{F} satisfies (a). \Box

Definition 1.1.4 (Normal Families). Let Ω be a region. A non-empty family \mathscr{F} of holomorphic functions on Ω is said to be a *normal family*² if it satisfies any of the equivalent conditions of Theorem 1.1.3.

 $^{^2 \}mathrm{Traditionally},$ the definition is reserved for $\mathscr F$ satisfying (c) of Montel's Theorem.