LECTURE 16

Date of Lecture: March 6, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Topology on the space of holomorphic functions

Last time we showed that if a non-empty family of holomorphic functions on a
region is locally bounded then it is uniformly equicontinuous on compact subsets
of that region. The two notions are actually equivalent, and equivalent to a few
other related notions. It is most convenient to work with a topology (coming from
a metric) on the space of holomorphic functions on a region.

1.1. The space (). Suppose 2 is aregion. Let () denote the space of holo-
morphic functions on . For each compact subset K of 2 and each f € 5(Q) let
us write || f||x for the supremum of |f]| on K. (In other words || f|lx = ||(f]x)]lco-)
For each n € N, define a compact set K,, by

Kn,:={z€Q|]|z] <n,dist(z, C\ Q) >1/n}.

Then one checks easily that
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e if K is a compact subset of 2 then K C K,, for some n > 1.

A sequence of compact sets { K} satisfying the above three properties is called an
exhaustion of Q by compact subsets. Let || f|ln = || fllk, for n € N and f € 52(Q).
Define a metric d on J#(12) as follows:
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(1.1.1) d(f,g)=_ ;M (f,g € 2(Q)).

We have the following

Lemma 1.1.2. The metric space (J(2),d) is complete. A sequence {f,} in 7 ()
converges with respect to the metric d if and only if it converges uniformly on
compact subsets of ).

Proof. We will first prove that convergence in (#(£2),d) implies uniform conver-
gence on compact sets.

Let {fi} be a convergent sequence in (##(Q2), d). Say it converges to f € S(Q).
We will show fr — f as k — infty uniformly on each K,. Since every compact set
is contained in some K, this will show that {fx} converges uniformly on compact
sets tof. Fix n € N. Given € > 0 we can find N € N such that
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From (1.1.1) it follows that
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(k> N).

It follows that
Ife = flln <€ (k=N).
Thus {fx} converges uniformly to f on K.

The above proof, with obvious modifications, also shows that if {f;} is Cauchy
in (A(Q),d), then it is Cauchy in C(K) for each compact subset K of Q where
C(K) is the space of continuous functions on K with supremum norm || - || k.

Now suppose {f} converges uniformly on compact subsets on 2. Let f be the
limiting function. Recall f must belong to J#(€2) in this case. Let € > 0 be given.
Let ng € N be chosen such that Y n =ng 4+ 1°°27" < ¢/2. Since fx — f uniformly
onk,, therefore there exists N > 1 such that ||fx — flln, < 2¢/(1 — 2¢) for all
k > N. In fact, since K,, C K,, for all n < ng, we have ||fx — flln < 2¢/(1 — 2¢)
for all K > N. Thus if k > N we have
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The same proof with obvious modifications also shows that if {f,,} is Cauchy in
each C(K), with K compact in €, then it is Cauchy in (J#(€2),d). This proves the
Lemma. g

The following is known as Montel’s Theorem?.

Theorem 1.1.3 (Montel’s Theorem). Let §2 be a region and F a non-empty subset
of (). The following are equivalent:

(a) F is locally bounded.

(b) Z is locally bounded and uniformly equicontinuous on compact subsets of
Q.

(c) Ewvery sequence in % has a subsequence which converges uniformly on com-
pact sets.

(d) Every sequence in F has a subsequence which converges in (S (£2),d).

(e) The closure F of F in (H(Q),d) is compact.

Proof. We have already proven (a)=-(b). Lemma 1.1.2 yields (¢) < (d) < (e).

We will now prove (b)=(c). For K a compact subset of Q let us write .7 |x
for the collection {f|x}fcz. Let K be a compact subset of . Suppose (b) is
true. According to Arzela-Ascoli this is equivalent to saying % |k is relatively
compact in (C(K),| - ||x), i-e., the closure of #|k in C(K) is compact. It follows
that every sequence in % has a subsequence (depending upon the compact set K)
which converges uniformly on K. Let {f,,} be a sequence in .%. Let {K;};°; be the
exhaustion of {2 by compact subsets that we introduced earlier (to define the metric
d). Let {gn1} be a subsequence of {f,} such that {g, 1} converges uniformly on
K,. For j > 1, we recursively define {g, j11} to be a subsequence of {g, ;} such

I'More precisely (a)<(c) is what is traditionally known as Montel’s Theorem.
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that {gn j+1} converges uniformly on K;i1. Set f,, = gr k. One checks easily that
{fn.} is a subsequence of {f,} which converges uniformly on each K, whence on
each compact subset of Q. Thus (c) is true.

Finally we show that (c) = (a). Suppose .% satisfies (c) and let K be a compact
subset of . The condition (c) is equivalent to saying that the closure of .7 |k in
(C(K),| - ||x) is compact. This means .#|k is bounded (in fact totally bounded)
in (C(K),| -|lx), and hence there exists Mg < oo such that || f||x < Mk for every
f € Z. In other words .# satisfies (a). O

Definition 1.1.4 (Normal Families). Let £ be a region. A non-empty family %
of holomorphic functions on € is said to be a normal family? if it satisfies any of
the equivalent conditions of Theorem 1.1.3.

2Tlraditionally7 the definition is reserved for .% satisfying (c) of Montel’s Theorem.
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