LECTURES 14-15

Dates of Lectures: March 1 and 2, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Rouché’s Theorem

Suppose € is a region and I" a cycle in 2 homologous to zero in 2, and suppose
that for z ¢ I'*, the winding number of I about z is either 0 or 1. Then we say T
encloses a point @ € Q\T* if n(T',2) = 1.

Theorem 1.1. Let  be a region and I' a cycle in Q such that T' ~ 0 (mod Q)
and such that n(T, z) is either 0 or 1 for z not in T'*. Suppose f(z) and g(z) are
analytic in Q and satisfy the inequality |f(2) — g(2)| < |f(2)| on T*. Then f(z) and
g(z) have the same number of zeros (counted with multiplicity) enclosed by T.

Proof. One checks easily that if z € I'*, then neither f(z), nor g(z), is zero. Clearly
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on I'*. Let F(z2) = ¢g(2)/f(z). From the inequality above we see that F'(I'*) C
B(1,1). It follows that O lies in the unbounded component of C ~\ f(I'*), whence
n(F(T),0) = 0. This means that (counting with multiplicity)

(%) #(zeros of F' enclosed by I') - #(poles of F' enclosed by I') = 0.
Now clearly (with all counts taking multiplicties into account):
#(zeros of F enclosed by T') — #(poles of F enclosed by I')

<1

is equal to
#(zeros of g enclosed by I') — #(zeros of f enclosed by T').
and this gives the result via (x). g

Examples 1.1.1. Here are two applications of Rouché’s theorem.
1) Let P(2) = anz™ + - - + ag, with a,, # 0. We will show that P(z) has n zeros
in C. We can divide by a,, and assume a,, = 1. Thus

P(2)=2"+ap 12" '+ +ao.

Let f(z) = 2™ and g(z) = P(z). To apply Rouché’s Theorem to f and g we wish
that |P(z) — z™| < |2™| on some circle around the origin. To achieve this, let

p= rnax{l7 (2 z_: |ai|> }
1/ (z) —9(2)

e

If |z| > p then




Thus if R > p and Dp is the open disc of radius R centred at 0, and Cg its bounding
circle, then applying Rouché on Cg, we see that P has n-roots in Dg. Since R > p
is arbitrary, we conclude that P(z) has n roots in C.

2) We will show that for each real A > 1, the equation z+e~* = X has exactly one
solutuon zg with Re(zp) > 0 (i.e., the equation has exactly one solution in the open
right half plane). To see this, let f(z) =2z —Aand g(z) =2z+e*—A. For R> 0
let v be the contour which is the right semicircle ¢ — Re® for —w/2 <t < 7/2
followed by the vertical line segment starting at iR and ending at —iR. Now
f(2) —g(z) = —e~*. On the imaginary axis we therefore have (with y € R)

f(iy) — g(iy)| = e =1 < /A2 +y? = |f(iy)].

On the semicircle of points Re*? with —7m/2 <0 < 7/2 we have

i i —Re'?
|[f(Re”) = g(Re™)| = [~ |
_ e—RCOSG

<1 (since Rcosf >0 for § € [—g, g])
< |Re' — A

provided R > A+ 1. But |Re?® — \| = |f(Re')|. Thus Rouché’s theorem’s hy-
potheses are satisfied by f and g on yg. Since yg encloses only one root of f(z) for
R > XA+ 1, therefore so does g. Let R — oo.

2. Conformal Maps

2.1. Similarity transformation. Recall an important property of an orthogonal
linear transformation 7: R™ — R, namely that T is a composition of rotations
and reflections, and if detT = 1 it is a rotation. If we are only interested in the
angle preserving nature of a transformation, then we are led to the notion of a
similarity transformation.

Definition 2.1.1. A linear transformation L: R™ — R" is said to be a similarity
transformation if there exists a non-zero scalar a such that oL is an orthogo-
nal transformation. A similarity transform is a conformal linear transformation if
det L > 0.

In practice it is convenient to assume that the scalar « in the definition above is
positive. And that will be our implicit assumption from now on.

We can regard the dual of R" as equal to R" via e; — e}, ¢ = 1,...,n where
e1,...,e, is the standard basis of R and ej, ..., e}, its dual basis (i.e., ef(e;) =
ij, 1 <1i,j <n). Equivalently, the inner product <, > on R" allows us to regard
each v € R™ as a functional (i.e., as an element of the dual of R™), namely the
functional @ —< v, x >, and this correspondence is bijective (and linear) between
R" and its dual. The transpose 17 of a linear operator 7" on R™ can therefore be
regarded as an operator on R™ and as such is characterised by the property that
< Tx,y >=< x, Tty > for all  and y in R™. With this identification, it is well
known that an orthogonal linear transformation T is one such that T'T = Ir.. In
particular, if L is a similarity transformation and « > 0 is as above, we have L'L =

a"2(aL)!(aLl) = a=?Ig~. This means , with A = det L, we have A% = a=2" | i.e.,

a=|Al"".
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Thus another definition of a similarity transformation L on R™ is that L is non-
singular and L'L = (A%)Y/"Ign.

Suppose L is a similarity transformation on R™ and «, A are as above. For x,
y in R”, it is easy to see that < L, Ly >=< z, L'Ly >= (A*)Y/" < z,y >, and
from here it is clear that
<Lz,Ly> <z,y>
Lz Lyl lzllllyl

Equation (2.1.2) says that a similarity transformation preserves angles between
vectors. But positive scalar multiplications of reflections could occur, so it may not
preserve the oriented angles between vectors. However, if det L > 0, i.e., if L is an
conformal linear transform, then it preserves oriented angles between vectors, since
the orthogonal transform aL is then a rotation.

Suppose n = 2 and L: R?> — R? is a conformal linear transformation. Let
M = (‘Z S) be the matrix corresponding to L with respect to the standard basis on
R2. Since MM = AI, = MM! where A = det M = ad — bc > 0, therefore one
sees that

(i) ab+ cd = ac+ bd = 0;
(i) a® +c*=b*+d? = A.
It is well known, and very easy to see, that this happens if and only if a = d and

b = —c. Indeed, the above relations between a, b, ¢, and d show that the the vector
(Z) is a solution of the system

(2.1.2)

.’E2+y2:A
ax +cy = 0.

(%)

There are only two solutions to the system (*) since the solutions are the intersection
points of the line az+cy = 0 (which passes through the origin) and the circle centred
at the origin of radius v/A. The two solutions are negatives (antipodes) of each
other. Let the two solutions be () = (55) and () = (Z;°). Only one of them
is such M = (¢ 3 ) has positive determinant (a requirement for conformality), and
that solution must be () = (). Since (y) = () is also a solution of (*) such
that det (¢ 3) = a®+ ¢ = A >0, we see that (}) = (¢). In other words, b = —c
and d = a.

Conversely, if M = (%) is a non-singular matrix such that a = d and b = —,
then clearly det M = a® + b2 > 0 and M'M = (a® + b?)I whence the linear
transformation corresponding to M is conformal.

We therefore have:

Lemma 2.1.3. A linear transformation L: R?> — R? is conformal if and only if
the matriz M = (2Y) corresponding to it (via the standard basis on R?) satisfies
a=d, b= —c and det M # 0.

There is another way of viewing this lemma. A conformal linear transformation
is a scaled version of a rotation. Rotation by an angle 6 in the plane is given by the
matrix Ry = (€50 ~5n%) A conformal linear transformation is of the form aRy
where o # 0. The Lemma is immediate.

2.2. Conformal maps on the plane. We begin with a general definition, even
though our interest is only in regions in the plane.
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Definition 2.2.1. Let f: U — R™ be a C'' map on an open subset U of R™. The
map f is conformal at x € U if the derivative (Df)(z): R™ — R"™ is a conformal
linear transformation. The map f is conformal it is conformal at each point of U.

Remark 2.2.2. If f is conformal at a point = in its domain U, then given any
two tangent vectors at z, their oriented angles are preserved by D f(x) in view of
the discussion we had above. In other words if v and o are two C'-paths passing
through = at time ¢ = 0, then the oriented angles between the velocity vectors
dry/dt|i=o and do/dt|;—o is the same as the oriented angle between the tangent
vectors (Df)(x)(dvy/dt|t=0) and (Df)(x)(do/dt|i=o) at f(p). The right way to
think of this is that up to a positive scalar multiple, the effect of f on tangent
spaces (with the standard Riemannian metric) is that of a rotation. In other words
Df(z) takes circles to circles. This is phrased classically as conformal maps take
infinitesimal circles to infinitesimal circles.

Let us regard linear transformations from R™ to R™ as m X n matrices in the
usual way (via the standard bases on R™ and R™ respectively).
Suppose €2 is a region in C = R? and f: @ — C a C'-map. Let f = u + v

be the decomposition of f into its real and imaginary parts. Then Df = (37 ij ).
From Lemma 2.1.3 we see that f is conformal if and only if u, = vy, u, = —v,, and

u2 + “12/ # 0. The first two conditions say that f is analytic and the last condition
says that |f/(2)]? # 0 for z € Q. We thus have,

Proposition 2.2.3. Let Q be a region in C. A map f: Q — C is conformal if and
only if f is analytic on Q with nowhere vanishing compler analytic derivative f’.

Proof. We have already supplied a proof above the statement of the theorem. Here
is a proof which is more “function theoretic”. Let zo be a point in Q. Let f: Q — C
be a C'-map, with f = u;v the decomposition of f into its real and imaginary parts.
Let t — z(t) be a C'-paths with domain a small interval containing 0 as an interior
point, say [—e, €], such that z(0) = zo and such that (dz(t)/d¢t)|:=0 # 0. Let us
write 2/(t) for dz(t)/dt. Let w(t) = f(z(t)). Conformality means that Arg(g((g)))
is independent of the choice of the C'-path ¢t ~— z(t) satisfying the hypotheses
we have imposed on it'. If f is analytic and f’(z9) # 0, then it is clear that

(7:’,'((8)) ) = f'(20) and we are done. Conversely, suppose Arg(“ %) is independent

2'(0)
of the path ¢t — z(t). Now

Wty = Loy + Wy

- Oz 87yy
B gz'(t)+7a)+gz/(t) —2/(t)
- Ox 2 oy 2

_1{of of\, L(of  Of \7m

IThis is easy to see and left for you to check. Use the fact that if t — 2;(t), ¢ = 1,2 are

two paths through zg of the kind we are considering and ¢ +— w;(t) their images under f then
/ ’
. . . . wy(0)) _ z5(0)
conformality is equivalent to saying Arg( w,lm)) = Arg( 20 )
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‘We therefore have.
w(0) _ ﬁ _of
2(0) Ox Oy

This can be rewritten as

N\
=
=
~—

N\
—
=
~—

of  of
Y

w'(0)
2'(0)

where A = 1/2(fs(20) — ify(20)), B =1/2(fs(20) + ify(20)), and e = 2'(0)/2'(0).
Clearly A and B do not depend on the path t + z(t), but €? does. The only way

Z=Z0

= A+ Be"

Arg (o3 )y will be independent of 8 is if B = 0. But the vanishing of B is equivalent
to f satisfying the Cauchy-Riemann equations at zg and hence f is analytic, since
zp is an arbitrary point of Q. O

3. Laurent Series

For a € C and 0 < r < s let A(a,r,s) be the annulus around a between the
circle of radius r and the circle of radius s, both centred at a. In other words

A(aaTys):{Z€C|7“<\z—a|<s}.

Let C7 and Cs be the (oriented) circles of radius r and s centred at a. Suppose
f(2) is holomorphic on A(a,r,s), the closed annulus bounded by C; and Cs. Let
I' = Cy — Cy. Tt is clear that T" is homologous to zero in the domain of f(z), for if
¢ does not lie in the domain of f(z) then ¢ does not lie in A(a,r, s), whence, either
|c —a|l <ror|c—a|l>s. In either case it is trivial to see that n(T', ¢) = 0. Finally
if ¢ € A(a,r,s) then n(T', ¢) = T'(Cy, ¢) = 1. The generalised Cauchy-Goursat
theorem then gives

mhij”@«<mew»

2mi Jp (— 2
Consequently
f(2) = 1i(z) + f2(2) (2 € Aa,7,5))
where, for z in the annular region we are considering

Az = - [ 1O

2t Jo, C— 2

_ [ I©
Pl = gz [ Fomc

From the integral formulas above, it is clear that fi(z) is holomorphic on the region
|z —a| > r and f2(z) is holomorphic on the region |z — a|] < s. In fact, a little
thought shows that if p is such that r < p < s and C’ is the circle with centre a and

and

radius p, then for [z — a| > p we have fi(z) = —5& fC dC and for |z —a| < p

f2(2) = 5= fC = 1) ~d(. Now, from earlier results of this course f2(z) has a power
series expansion in around a in the disc |z — a| < s,

= Z An(z—a)”

n=0
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where the coefficients A,, are given by

(%) A, = i/C Kﬂf){mdc (n>0).

2mi

As for f1(z) we have for [z —a| > 7
1
=

_ 1 f(©)
O 2mi o, ((—a)—(z—a)dc

1 £(©)
5 . <zfa><%71>dC
_27”-/6‘1,; z—a”+1

n 1
:2m/(;1; (z—a)”

Standard uniform convergence arguments (check this!) allowing the sum and the
integral to be interchanged gives

z) = Z B,(z—a)™"

n=1

where for n > 1, B, = 5 fcl F(O)(¢ — a)""1d¢. This last integral is the same if
taken over C, by Stokes’ Theorem or by the genaralised Cauchy-Goursat theorem.
We thus have

() B, 2m/ FOK€—a) ¢ (n>1).

Putting together () and (%) we see that:
Theorem 3.1. Let f(z) be holomorphic on the annulus
A{zeC|r<|z—a|l <s}

centred at a, where r = 0 and s = oo are allowed. The function f(z) can be
expressed as a series

G a1
f(z):“rm_F_FZia
(311) +a0+a1(z—a)+...+an(zia)n+”'
= Z an(Z—Cl)n

which converges uniformly on compact subsets of A. The coefficients a,, are given
by the integral formula
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where p € (r,s) and C,, is the circle of radius p centred at a. The series

h(z)= ) an(z—a)"

n<—1

converges uniformly on compact sets in the unbounded region |z — a| > r and the
series

fa(z) = Z an(z —a)"

n=0

converges uniformly on compact sets in the disc |z — a| < s.

Proof. Our discussion before the statement was for bounded annuli where the inner
radius r # 0 and s # oo and f was holomorphic on the closure of the annulus under
study. We are now dealing with fholomorphic on the open annulus A, and allowing
r to equal zero, and s to equal co. Pick 7’ and s’ satisfying r < r’ < s’ < s and we
see that the statement of the theorem is valid on A(a,7’,s’) based on our discussion
before the statement (see (%) and (xx) for formulas for the coefficients a,). Since
r’ and s’ are arbitrary in the range r < 1’ < s’ < s, we are done. O

Definition 3.1.3. For f(z) as in Theorem 3.1, the series (3.1.1) is called the
Laurent series of f(z) centred at a. The series in the negative powers of z — a, i.e.,
fi(2) =3, <1 an/(z —a)™ is called the principal part of the Laurent expansion of
f(2) around a.

3.2. Residues. Suppose f(z) has an isolated singularity at some point a € C.
According to Theorem 3.1 we have a Laurent series expansion of f(z) around a,

oo

flz) = Z an(z —a)".
This expansion is valid in any punctured disc B* = B*(a, r) = B(a, 7) \ {a} on
which f(z) is analytic.

Definition 3.2.1. With f(z) and a,, n € Z, as above, the residue of f at a,
denoted Res,—, f(2) is

Res,—.f(2) = a_1.

Let v be a closed path in B* such that n(v,a) = 1. Note that if n # —1 , the
function (z — a)™ has a primitive in B* and hence fv (z —a)™dz = 0 for all such n.
Since the convergence of the Laurent series is uniform on compact subsets of B*,
we have, from the observation we just made
o0

n _ 1 a—1 _
3 A(Za) dzm/wz_adzResz_af(z).

=—00

1 1
—_— /f(z)dz = —
211 ~ 21 "

We thus have

Lemma 3.2.2. Let f(z), B* and v be as above.
(a) The residue of f(2) at a is given by the formula Res,—, f(z) = (2mi) 1 fw f(2)dz.
(b) The residue of f(z) at a is characterised by the property that it the only
complex number R such that f(z) — R(z — a)~! has a primitive in B*.
7



Proof. We have already seen part (a). Part (b) is an immediate consequence, since
[, f(2) = R(z —a)~"dz has to equal zero if f(2) — R(z — a)~! has a primitive, giving
R = Res,—.f(z). Conversely, if R = Res,—,f(z), then as we observed earlier,
f(z2) — R(z — a)~! has a primitive, since its Laurent expansion is such that the
coefficient of (z — a)~! is zero. O

4. Families of holomorphic functions

4.1. Locally bounded families. Let € be a region and .% a non-empty family of
holomorphic functions on 2.

Definition 4.1.1. % is a said to be locally bounded if for each compact subset
K of €, there exists Mg such that for every z € K and every f € % we have
[f(2)] < M.

Closely related (in fact, via a theorem of Paul Montel, equivalent) to the notion
of locally bounded families is the notion of uniformly equicontinuous families.

Definition 4.1.2. .# is said to be uniformly equicontinuous on compact sets (UECS)
if for each compact subset K of Q and € > 0, there exists 6 = dx > 0 such that
|f(2) — f(w)]| < e whenever z,w € K and |z — w| < 6.

Recall that the Arzela-Ascoli theorem says that if % is a family of continuous
functions on a compact subset K of C then it is totally bounded (i.e., its closure
is compact) if and only if it is uniformly bounded and equicontinuous. The next
result says that for a family of holomorphic functions, the notion of equicontinuity
can be dropped. More preciselly we have:

Lemma 4.1.3. A locally bounded family of holomorphic functions on Q is UECS.

Proof. Let .7 be locally bounded. Let K = B(zg,p) be a closed ball contained in
Q. By definition of a locally bounded family we can find a positive real number
My such that |f(2)] < Mg for all z € K. Since the distance between K and C\
is strictly greater than 0, we can find r > p such that B(zp,7) C €. Let € > 0 be
given. Set
e(r = p)?

MKT '
Then for z,w € K with and f € % we have (with C, the circle with radius r

centred at zp)
O I(9)
L

/ (z = w)f(Q)
L (C=2)(C—w)

|z — w|Mgk

1
o /CT‘@—z)(c—w)"dC'

Mg 1
< | ——527r ||z —w|
2m (r—p)?

rMg|z — w|
(r—p)?

0 =

1

() = )l = 5

1
2

dg‘
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This last quantity is less than € if |z — w| < dx by our choice of dx above.



