
LECTURES 14-15

Dates of Lectures: March 1 and 2, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Rouché’s Theorem

Suppose Ω is a region and Γ a cycle in Ω homologous to zero in Ω, and suppose
that for z /∈ Γ∗, the winding number of Γ about z is either 0 or 1. Then we say Γ
encloses a point a ∈ Ω r Γ∗ if η(Γ, z) = 1.

Theorem 1.1. Let Ω be a region and Γ a cycle in Ω such that Γ ∼ 0 (mod Ω)
and such that η(Γ, z) is either 0 or 1 for z not in Γ∗. Suppose f(z) and g(z) are
analytic in Ω and satisfy the inequality |f(z)−g(z)| < |f(z)| on Γ∗. Then f(z) and
g(z) have the same number of zeros (counted with multiplicity) enclosed by Γ.

Proof. One checks easily that if z ∈ Γ∗, then neither f(z), nor g(z), is zero. Clearly∣∣∣∣∣ g(z)

f(z)
− 1

∣∣∣∣∣ < 1

on Γ∗. Let F (z) = g(z)/f(z). From the inequality above we see that F (Γ∗) ⊂
B(1, 1). It follows that 0 lies in the unbounded component of C r f(Γ∗), whence
η(F (Γ), 0) = 0. This means that (counting with multiplicity)

(∗) #(zeros of F enclosed by Γ) - #(poles of F enclosed by Γ) = 0.

Now clearly (with all counts taking multiplicties into account):

#(zeros of F enclosed by Γ)−#(poles of F enclosed by Γ)

is equal to

#(zeros of g enclosed by Γ)−#(zeros of f enclosed by Γ).

and this gives the result via (∗). �

Examples 1.1.1. Here are two applications of Rouché’s theorem.
1) Let P (z) = anz

n + · · ·+ a0, with an 6= 0. We will show that P (z) has n zeros
in C. We can divide by an and assume an = 1. Thus

P (z) = zn + an−1z
n−1 + · · ·+ a0.

Let f(z) = zn and g(z) = P (z). To apply Rouché’s Theorem to f and g we wish
that |P (z)− zn| < |zn| on some circle around the origin. To achieve this, let

ρ = max

{
1,

(
2

n−1∑
i=0

|ai|

)}
.

If |z| > ρ then

|f(z)− g(z)|
|f(z)|

=

∣∣∣∣∣an−1

z
+ · · ·+ a0

zn

∣∣∣∣∣ <
∑n−1
i=0 |ai|
ρ

<
1

2
.
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Thus if R > ρ and DR is the open disc of radius R centred at 0, and CR its bounding
circle, then applying Rouché on CR, we see that P has n-roots in DR. Since R > ρ
is arbitrary, we conclude that P (z) has n roots in C.

2) We will show that for each real λ > 1, the equation z+e−z = λ has exactly one
solutuon z0 with Re(z0) > 0 (i.e., the equation has exactly one solution in the open
right half plane). To see this, let f(z) = z − λ and g(z) = z + e−z − λ. For R > 0
let γR be the contour which is the right semicircle t 7→ Reit for −π/2 ≤ t ≤ π/2
followed by the vertical line segment starting at iR and ending at −iR. Now
f(z)− g(z) = −e−z. On the imaginary axis we therefore have (with y ∈ R)

|f(iy)− g(iy)| = |e−iy| = 1 <
√
λ2 + y2 = |f(iy)|.

On the semicircle of points Reiθ with −π/2 ≤ θ ≤ π/2 we have

|f(Reiθ)− g(Reiθ)| = |e−Re
iθ

|

= e−R cos θ

≤ 1 (since R cos θ > 0 for θ ∈ [−π
2
,
π

2
])

≤ |Reiθ − λ|

provided R > λ + 1. But |Reiθ − λ| = |f(Reiθ)|. Thus Rouché’s theorem’s hy-
potheses are satisfied by f and g on γR. Since γR encloses only one root of f(z) for
R > λ+ 1, therefore so does g. Let R→∞.

2. Conformal Maps

2.1. Similarity transformation. Recall an important property of an orthogonal
linear transformation T : Rn → Rn, namely that T is a composition of rotations
and reflections, and if detT = 1 it is a rotation. If we are only interested in the
angle preserving nature of a transformation, then we are led to the notion of a
similarity transformation.

Definition 2.1.1. A linear transformation L : Rn → Rn is said to be a similarity
transformation if there exists a non-zero scalar α such that αL is an orthogo-
nal transformation. A similarity transform is a conformal linear transformation if
detL > 0.

In practice it is convenient to assume that the scalar α in the definition above is
positive. And that will be our implicit assumption from now on.

We can regard the dual of Rn as equal to Rn via ei 7→ e∗i , i = 1, . . . , n where
e1, . . . , en is the standard basis of Rn and e∗1, . . . , e

∗
n, its dual basis (i.e., e∗i (ej) =

δij , 1 ≤ i, j ≤ n). Equivalently, the inner product < , > on Rn allows us to regard
each v ∈ Rn as a functional (i.e., as an element of the dual of Rn), namely the
functional x 7→< v,x >, and this correspondence is bijective (and linear) between
Rn and its dual. The transpose T t of a linear operator T on Rn can therefore be
regarded as an operator on Rn and as such is characterised by the property that
< Tx,y >=< x, T ty > for all x and y in Rn. With this identification, it is well
known that an orthogonal linear transformation T is one such that T tT = IRn . In
particular, if L is a similarity transformation and α > 0 is as above, we have LtL =
α−2(αL)t(αL) = α−2IRn . This means , with ∆ = detL, we have ∆2 = α−2n, i.e.,

α = |∆|− 1
n .
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Thus another definition of a similarity transformation L on Rn is that L is non-
singular and LtL = (∆2)1/nIRn .

Suppose L is a similarity transformation on Rn and α, ∆ are as above. For x,
y in Rn, it is easy to see that < Lx, Ly >=< x, LtLy >= (∆2)1/n < x,y >, and
from here it is clear that

(2.1.2)
< Lx, Ly >

‖Lx‖‖Ly‖
=
< x,y >

‖x‖‖y‖
.

Equation (2.1.2) says that a similarity transformation preserves angles between
vectors. But positive scalar multiplications of reflections could occur, so it may not
preserve the oriented angles between vectors. However, if detL > 0, i.e., if L is an
conformal linear transform, then it preserves oriented angles between vectors, since
the orthogonal transform αL is then a rotation.

Suppose n = 2 and L : R2 → R2 is a conformal linear transformation. Let
M = ( a bc d ) be the matrix corresponding to L with respect to the standard basis on
R2. Since M tM = ∆I2 = MM t where ∆ = detM = ad − bc > 0, therefore one
sees that

(i) ab+ cd = ac+ bd = 0;
(ii) a2 + c2 = b2 + d2 = ∆.

It is well known, and very easy to see, that this happens if and only if a = d and
b = −c. Indeed, the above relations between a, b, c, and d show that the the vector
( bd ) is a solution of the system

(∗)
x2 + y2 = ∆

ax+ cy = 0.

There are only two solutions to the system (∗) since the solutions are the intersection
points of the line ax+cy = 0 (which passes through the origin) and the circle centred

at the origin of radius
√

∆. The two solutions are negatives (antipodes) of each
other. Let the two solutions be ( xy ) = ( x0

y0 ) and ( xy ) = (−x0
−y0 ). Only one of them

is such M = ( a xc y ) has positive determinant (a requirement for conformality), and
that solution must be ( xy ) = ( bd ). Since ( xy ) = (−ca ) is also a solution of (∗) such
that det ( a xc y ) = a2 + c2 = ∆ > 0, we see that ( bd ) = (−ca ). In other words, b = −c
and d = a.

Conversely, if M = ( a bc d ) is a non-singular matrix such that a = d and b = −c,
then clearly detM = a2 + b2 > 0 and M tM = (a2 + b2)I whence the linear
transformation corresponding to M is conformal.

We therefore have:

Lemma 2.1.3. A linear transformation L : R2 → R2 is conformal if and only if
the matrix M = ( a bc d ) corresponding to it (via the standard basis on R2) satisfies
a = d, b = −c and detM 6= 0.

There is another way of viewing this lemma. A conformal linear transformation
is a scaled version of a rotation. Rotation by an angle θ in the plane is given by the
matrix Rθ = ( cos θ − sin θ

sin θ cos θ
). A conformal linear transformation is of the form αRθ

where α 6= 0. The Lemma is immediate.

2.2. Conformal maps on the plane. We begin with a general definition, even
though our interest is only in regions in the plane.
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Definition 2.2.1. Let f : U → Rn be a C1 map on an open subset U of Rn. The
map f is conformal at x ∈ U if the derivative (Df)(x) : Rn → Rn is a conformal
linear transformation. The map f is conformal it is conformal at each point of U .

Remark 2.2.2. If f is conformal at a point x in its domain U , then given any
two tangent vectors at x, their oriented angles are preserved by Df(x) in view of
the discussion we had above. In other words if γ and σ are two C1-paths passing
through x at time t = 0, then the oriented angles between the velocity vectors
dγ/dt|t=0 and dσ/dt|t=0 is the same as the oriented angle between the tangent
vectors (Df)(x)(dγ/dt|t=0) and (Df)(x)(dσ/dt|t=0) at f(p). The right way to
think of this is that up to a positive scalar multiple, the effect of f on tangent
spaces (with the standard Riemannian metric) is that of a rotation. In other words
Df(x) takes circles to circles. This is phrased classically as conformal maps take
infinitesimal circles to infinitesimal circles.

Let us regard linear transformations from Rn to Rm as m × n matrices in the
usual way (via the standard bases on Rn and Rm respectively).

Suppose Ω is a region in C = R2 and f : Ω → C a C1-map. Let f = u + iv
be the decomposition of f into its real and imaginary parts. Then Df = ( ux uyvx vy ).
From Lemma 2.1.3 we see that f is conformal if and only if ux = vy, uy = −vx, and
u2
x + u2

y 6= 0. The first two conditions say that f is analytic and the last condition

says that |f ′(z)|2 6= 0 for z ∈ Ω. We thus have,

Proposition 2.2.3. Let Ω be a region in C. A map f : Ω→ C is conformal if and
only if f is analytic on Ω with nowhere vanishing complex analytic derivative f ′.

Proof. We have already supplied a proof above the statement of the theorem. Here
is a proof which is more “function theoretic”. Let z0 be a point in Ω. Let f : Ω→ C
be a C1-map, with f = uiv the decomposition of f into its real and imaginary parts.
Let t 7→ z(t) be a C1-paths with domain a small interval containing 0 as an interior
point, say [−ε, ε], such that z(0) = z0 and such that (dz(t)/dt)|t=0 6= 0. Let us

write z′(t) for dz(t)/dt. Let w(t) = f(z(t)). Conformality means that Arg(w
′(0)
z′(0) )

is independent of the choice of the C1-path t 7→ z(t) satisfying the hypotheses
we have imposed on it1. If f is analytic and f ′(z0) 6= 0, then it is clear that

(w
′(0)
z′(0) ) = f ′(z0) and we are done. Conversely, suppose Arg(w

′(0)
z′(0) ) is independent

of the path t 7→ z(t). Now

w′(t) =
∂f

∂x
x′(t) +

∂f

∂y
y′(t)

=
∂f

∂x

z′(t) + z′(t)

2
+
∂f

∂y

z′(t)− z′(t)
2i

=
1

2

(
∂f

∂x
− ∂f

∂y

)
z′(t) +

1

2

(
∂f

∂x
+
∂f

∂y

)
z′(t)

1This is easy to see and left for you to check. Use the fact that if t 7→ zi(t), i = 1, 2 are

two paths through z0 of the kind we are considering and t 7→ wi(t) their images under f then

conformality is equivalent to saying Arg(w′
2(0)

w′
1(0)

) = Arg( z′2(0)
z′1(0)

).
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We therefore have.

w′(0)

z′(0)
=

1

2

(
∂f

∂x
− ∂f

∂y

)∣∣∣∣∣
z=z0

+
1

2

(
∂f

∂x
+
∂f

∂y

)∣∣∣∣∣
z=z0

z′(0)

z′(0)
.

This can be rewritten as
w′(0)

z′(0)
= A+Beiθ

where A = 1/2(fx(z0)− ify(z0)), B = 1/2(fx(z0) + ify(z0)), and eiθ = z′(0)/z′(0).
Clearly A and B do not depend on the path t 7→ z(t), but eiθ does. The only way

Arg(w
′(0)
z′(0) ) will be independent of θ is if B = 0. But the vanishing of B is equivalent

to f satisfying the Cauchy-Riemann equations at z0 and hence f is analytic, since
z0 is an arbitrary point of Ω. �

3. Laurent Series

For a ∈ C and 0 < r < s let A(a, r, s) be the annulus around a between the
circle of radius r and the circle of radius s, both centred at a. In other words

A(a, r, s) = {z ∈ C | r < |z − a| < s}.

Let C1 and C2 be the (oriented) circles of radius r and s centred at a. Suppose
f(z) is holomorphic on A(a, r, s), the closed annulus bounded by C1 and C2. Let
Γ = C2 − C1. It is clear that Γ is homologous to zero in the domain of f(z), for if
c does not lie in the domain of f(z) then c does not lie in A(a, r, s), whence, either
|c− a| < r or |c− a| > s. In either case it is trivial to see that η(Γ, c) = 0. Finally
if c ∈ A(a, r, s) then η(Γ, c) = Γ(C2, c) = 1. The generalised Cauchy-Goursat
theorem then gives

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ (z ∈ A(a, r, s)).

Consequently

f(z) = f1(z) + f2(z) (z ∈ A(a, r, s))

where, for z in the annular region we are considering

f1(z) = − 1

2πi

∫
C1

f(ζ)

ζ − z
dζ

and

f2(z) =
1

2πi

∫
C2

f(ζ)

ζ − z
dζ.

From the integral formulas above, it is clear that f1(z) is holomorphic on the region
|z − a| > r and f2(z) is holomorphic on the region |z − a| < s. In fact, a little
thought shows that if ρ is such that r < ρ < s and Cρ is the circle with centre a and

radius ρ, then for |z − a| > ρ we have f1(z) = − 1
2πi

∫
Cρ

f(ζ)
ζ−z dζ and for |z − a| < ρ

f2(z) = 1
2πi

∫
Cρ

f(ζ)
ζ−z dζ. Now, from earlier results of this course f2(z) has a power

series expansion in around a in the disc |z − a| < s,

f2(z) =

∞∑
n=0

An(z − a)n
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where the coefficients An are given by

(∗) An =
1

2πi

∫
Cρ

f(ζ)

(ζ − a)n+1
dζ (n ≥ 0).

As for f1(z) we have for |z − a| > r

f1(z) = − 1

2πi

∫
C1

f(ζ)

ζ − z
dζ

= − 1

2πi

∫
C1

f(ζ)

(ζ − a)− (z − a)
dζ

= − 1

2πi

∫
C1

f(ζ)

(z − a)( ζ−az−a − 1)
dζ

=
1

2πi

∫
C1

∞∑
n=0

(ζ − a)n

(z − a)n+1
dζ

=
1

2πi

∫
C1

∞∑
n=1

(ζ − a)n−1

(z − a)n
dζ.

Standard uniform convergence arguments (check this!) allowing the sum and the
integral to be interchanged gives

f1(z) =

∞∑
n=1

Bn(z − a)−n

where for n ≥ 1, Bn = 1
2πi

∫
C1
f(ζ)(ζ − a)n−1dζ. This last integral is the same if

taken over Cρ by Stokes’ Theorem or by the genaralised Cauchy-Goursat theorem.
We thus have

(∗∗) Bn =
1

2πi

∫
Cρ

f(ζ)(ζ − a)n−1dζ (n ≥ 1).

Putting together (∗) and (∗∗) we see that:

Theorem 3.1. Let f(z) be holomorphic on the annulus

A{z ∈ C | r < |z − a| < s}

centred at a, where r = 0 and s = ∞ are allowed. The function f(z) can be
expressed as a series

(3.1.1)

f(z) = · · ·+ a−m
(z − a)m

+ · · ·+ a−1

z − a
+ a0 + a1(z − a) + · · ·+ an(z − a)n + . . .

=

∞∑
n=−∞

an(z − a)n

which converges uniformly on compact subsets of A. The coefficients an are given
by the integral formula

(3.1.2) an =
1

2πi

∫
Cρ

f(ζ)

(ζ − a)n+1
dζ (n ∈ Z)
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where ρ ∈ (r, s) and Cρ is the circle of radius ρ centred at a. The series

f1(z) =
∑
n≤−1

an(z − a)n

converges uniformly on compact sets in the unbounded region |z − a| > r and the
series

f2(z) =

∞∑
n=0

an(z − a)n

converges uniformly on compact sets in the disc |z − a| < s.

Proof. Our discussion before the statement was for bounded annuli where the inner
radius r 6= 0 and s 6=∞ and f was holomorphic on the closure of the annulus under
study. We are now dealing with fholomorphic on the open annulus A, and allowing
r to equal zero, and s to equal ∞. Pick r′ and s′ satisfying r < r′ < s′ < s and we
see that the statement of the theorem is valid on A(a, r′, s′) based on our discussion
before the statement (see (∗) and (∗∗) for formulas for the coefficients an). Since
r′ and s′ are arbitrary in the range r < r′ < s′ < s, we are done. �

Definition 3.1.3. For f(z) as in Theorem 3.1, the series (3.1.1) is called the
Laurent series of f(z) centred at a. The series in the negative powers of z − a, i.e.,
f1(z) =

∑
n≤−1 an/(z− a)n is called the principal part of the Laurent expansion of

f(z) around a.

3.2. Residues. Suppose f(z) has an isolated singularity at some point a ∈ C.
According to Theorem 3.1 we have a Laurent series expansion of f(z) around a,

f(z) =

∞∑
n=−∞

an(z − a)n.

This expansion is valid in any punctured disc B∗ = B∗(a, r) = B(a, r) r {a} on
which f(z) is analytic.

Definition 3.2.1. With f(z) and an, n ∈ Z, as above, the residue of f at a,
denoted Resz=af(z) is

Resz=af(z) = a−1.

Let γ be a closed path in B∗ such that η(γ, a) = 1. Note that if n 6= −1 , the
function (z − a)n has a primitive in B∗ and hence

∫
γ
(z − a)ndz = 0 for all such n.

Since the convergence of the Laurent series is uniform on compact subsets of B∗,
we have, from the observation we just made

1

2πi

∫
γ

f(z)dz =
1

2πi

∞∑
n=−∞

∫
γ

(z − a)ndz =
1

2πi

∫
γ

a−1

z − a
dz = Resz=af(z).

We thus have

Lemma 3.2.2. Let f(z), B∗ and γ be as above.

(a) The residue of f(z) at a is given by the formula Resz=af(z) = (2πi)−1
∫
γ
f(z)dz.

(b) The residue of f(z) at a is characterised by the property that it the only
complex number R such that f(z)−R(z − a)−1 has a primitive in B∗.
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Proof. We have already seen part (a). Part (b) is an immediate consequence, since∫
γ
f(z)−R(z−a)−1dz has to equal zero if f(z)−R(z−a)−1 has a primitive, giving

R = Resz=af(z). Conversely, if R = Resz=af(z), then as we observed earlier,
f(z) − R(z − a)−1 has a primitive, since its Laurent expansion is such that the
coefficient of (z − a)−1 is zero. �

4. Families of holomorphic functions

4.1. Locally bounded families. Let Ω be a region and F a non-empty family of
holomorphic functions on Ω.

Definition 4.1.1. F is a said to be locally bounded if for each compact subset
K of Ω, there exists MK such that for every z ∈ K and every f ∈ F we have
|f(z)| < MK .

Closely related (in fact, via a theorem of Paul Montel, equivalent) to the notion
of locally bounded families is the notion of uniformly equicontinuous families.

Definition 4.1.2. F is said to be uniformly equicontinuous on compact sets (UECS)
if for each compact subset K of Ω and ε > 0, there exists δ = δK > 0 such that
|f(z)− f(w)| < ε whenever z, w ∈ K and |z − w| < δ.

Recall that the Arzela-Ascoli theorem says that if F is a family of continuous
functions on a compact subset K of C then it is totally bounded (i.e., its closure
is compact) if and only if it is uniformly bounded and equicontinuous. The next
result says that for a family of holomorphic functions, the notion of equicontinuity
can be dropped. More preciselly we have:

Lemma 4.1.3. A locally bounded family of holomorphic functions on Ω is UECS.

Proof. Let F be locally bounded. Let K = B(z0, ρ) be a closed ball contained in
Ω. By definition of a locally bounded family we can find a positive real number
MK such that |f(z)| < MK for all z ∈ K. Since the distance between K and CrΩ
is strictly greater than 0, we can find r > ρ such that B(z0, r) ⊂ Ω. Let ε > 0 be
given. Set

δK =
ε(r − ρ)2

MKr
.

Then for z, w ∈ K with and f ∈ F we have (with Cr the circle with radius r
centred at z0)

|f(z)− f(w)| = 1

2π

∣∣∣∣∣
∫
Cr

[
f(ζ)

ζ − z
− f(ζ)

ζ − w

]
dζ

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
∫
Cr

(z − w)f(ζ)

(ζ − z)(ζ − w)
dζ

∣∣∣∣∣
≤ |z − w|MK

2π

∫
Cr

∣∣∣ 1

(ζ − z)(ζ − w)

∣∣∣|dζ|
≤

(
MK

2π

1

(r − ρ)2
2πr

)
|z − w|

=
rMK |z − w|

(r − ρ)2
.
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This last quantity is less than ε if |z − w| < δK by our choice of δK above. �
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