
LECTURE 12 AND 13

Dates of Lectures: February 15 and 16, 2017

Some of the proofs here are elaborations and cleaner expositions of what was
given in class. Others are a quick summary.

1. Closed and exact forms on regions in C

1.1. Our conventions and assumptions are as follows. By a form on an open set U
of C we mean a C1 1-form on U . Such a form ω can be expressed in terms of the
real and imaginary coordinates x and y as

ω = pdx+ qdy

where p, q : U → C are C1 functions. We have the exterior derivative d on n-forms.
Recall that for a function f in U with partial derivatives the exterior derivative is
given by df = fxdx + fydy and for a 1-form ω = pdx + qdy on U with p and q
possessing partial derivatives (not necessarily continuous, i.e., ω is not necessarily
a form), dω = (qx − py)dx ∧ dy.

A form ω is said to be closed if dω = 0 and it is said be exact if ω = df for some
C2 function f on Ω.

Note that if γ : [a, b] → U is closed path in U and ω is an exact form then the
line integral

∫
γ
ω = 0. Indeed, suppose ω = df where f is C2, then∫

γ

ω =

∫
γ

df =

∫
[a,b]

γ∗(df) =

∫
[a,b]

d(f ◦γ) = f(γ(b))− f(γ(a)) = 0.

It is clear that the closed path γ in the above formula can be replaced by a cycle Γ
to give

∫
Γ
ω = 0. We need the following (a version of the Poincaré Theorem)

Lemma 1.1.1. Let B = B(a, r) be an open ball in C and ω a closed form on B.
Then ω is exact. In particular ∫

Γ

ω = 0

for all cycles Γ in B.

Proof. Let ω = pdx + qdy. For z ∈ B let Lz be line segment starting at a and
ending at z. Define

u(z) =

∫
Lz

ω.

If z = x + iy and a = c + id (x, y, c, d real numbers) then we have four paths,
σ = [a, x+ id], τ = [x+ id, z, τ ′ = [a, c+ iy] and σ′ = [c+ iy, z]. Since ω is closed,
by Stokes’ Theorem u(z) =

∫
σ
ω +

∫
τ
ω =

∫
σ′
ω +

∫
τ ′
ω. From the fundamental

theorem of calculus it is not hard to see that ux = p and uy = q. Hence ω = du
whence it is exact. �

1



2. Homology theory for cycles

2.1. Cycles homologous to zero. In complex analysis, the following definition
is used for cycles homologous to zero in a region.

Definition 2.1.1. Let Ω be a region. A cycle Γ in Ω is said to be homologous to
zero in Ω if η(Γ, a) = 0 for every a /∈ Ω.

If Γ is homologous to zero in Ω, we often write Γ ∼ 0 (mod Ω). If Γ and Γ′ two
cycles in Ω and Γ − Γ′ ∼ 0 (mod Ω), we often write Γ ∼ Γ′ (mod Ω) and say Γ is
homologous to Γ′ with respect to Ω. Note that if Γ ∼ 0 (mod Ω) then Γ ∼ 0 (mod
Ω′) for every Ω′ ⊃ Ω.

2.2. Grid cycles. A cycle Σ in the complex plane is said to be a grid cycle if it
is of the form

Σ =

m∑
i=1

niσi

where ni ∈ Z and σi is either a horizontal segment of the form [z, z + h where h is
a positive real number or of the form [z, z + ik] where k is a positive real number.

Lemma 2.2.1. Let Ω be a region and Γ a cycle in Ω. Then there exists a grid
cycle Γ0 in Ω such that ∫

Γ

ω =

∫
Γ0

ω

for every closed form ω on Ω. (In particular, taking ω = dz/(z − a) for a /∈ Ω we
have Γ ∼ Γ0 (mod Ω).)

Proof. Without loss of generality we may assume Γ is a closed path γ : [a, b]→ Ω.
Let M > 0 be a real number such that the distance between the compact set γ∗

and C r Ω is < M . By uniform continuity of γ ([a, b] is compact!) there exists
δ > 0 such that |γ(s)− γ(t)| < M whenever |s− t| < δ. Taking a partition

a = t0 < t1 < · · · < tn = b

such that the length of each sub-interval determined by successive point in the
partition is less that δ we see that each γ([ti−1, ti]), i = 1, . . . , n is contained in
an open ball Bi of radius < M and centered at (say) γ((ti−1 + ti)/2). It follows
that Bi is contained in Ω. Moreover we can connect γ(ti−1) with γ(ti) in Bi by
two line segments, one of which is horizontal and the other vertical, and let σi be
such a chain. Let γi = γ|[ti−1, ti]. Then from Lemma 1.1.1 we have

∫
γi
ω =

∫
σi
ω

for every closed form ω. Set Γ0 =
∑n
i=1 σi. It is clear that Γ0 is a cycle and that∫

γ
ω =

∫
Γ0
ω for every closed form ω on Ω. �

2.3. Closed forms and cycles homologous to zero. The proof of the main
theorem below is due to E. Artin. See [A, § 4.6, pp.144–146].

Theorem 2.3.1. Let Ω be a region and Γ a cycle in Ω such that Γ ∼ 0 (mod Ω).
Then ∫

Γ

ω = 0

for every closed form ω.
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Proof. In view of Lemma 2.2.1 we may assume Γ is a grid cycle. Then Γ is the sum
of integral multiple of finite length line segments in Ω which are either horizontal or
vertical. Suppose σ is such a segment. Consider the infinite line supporting σ∗ and
take the union all lines so obtained. This gives a grid in C with constituent closed
rectangles being finite in number (since the number of horizontal and vertical lines
constituting the grid is finite in number). Some of these rectangles are bounded
and others are infinite. See the picture below from [A, Fig.4-11, p.145]

Let Ri, i = 1, . . . , n be the bounded rectangles and Qr, r = 1, . . . ,m the infinite
rectangles. Pick points ai (resp. qr) in the interior of Ri (resp. Qr) for each i ∈
{1, . . . , n}) (resp. r ∈ {1, . . . ,m}). Define a new cycle in C

(2.3.1.1) Σ =

n∑
i=1

η(Γ, ai)∂Ri.

The convention we use is that ∂R for any finite closed rectangle its boundary ∂R is a
grid cycle with the oriented edges being the constituent segments, the orientation of
an edge being such that R is to its left when one moves along the oriented segment
in the direction of the orientation. It is easy to see that

(†) η(Γ, a) = η(Σ, a) (a /∈ Γ∗ ∪ Σ∗).

For a chain ∆ in C let ∆ denote its class in C(C)/R(C). We claim that Γ−Σ ∈
R(C). To see this note that

(∗) Γ− Σ =
∑
σ

dσσ

where dσ ∈ Z and σ runs through R(C) equivalence classes of oriented edges of ∂Ri,
i ∈ {1, . . . , n}. We can write the expression in (∗) so that it is a reduced expression,
i.e., each index σ occurs only once as an index. Suppose σ is a constituent edge of
∂R where R is one of R1, . . . , Rn. Then either σ∗ is a common (un-oriented) edge
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of two finite rectangles or the common edge of a finite rectangle and an infinite
rectangle. In the first case, suppose Ri and Rj have σ∗ as a common un-oriented
edge, with Ri lying to the left of σ and Rj to the right. Consider the cycle class

∆ = Γ− Σ− dσ∂Ri.
The coefficient of σ in this cycle is zero. It follows that η(∆, ai) = η(∆, aj), since
the common boundary between Ri and Rj does not figure in the expression for ∆
modulo R(C). Using (†) it follows that

η(−dσ∂Ri, ai) = η(−dσ∂Ri, aj).
This means dσ = 0. Now suppose σ∗ is the common edge of a finite rectangle Ri
and an infinite rectangle Qr. We may assume that σ is so oriented that Ri is to
the left of σ (otherwise use −σ, and make the corresponding change in (∗)). Again
using (†) and the same argument as before (with Qr replacing Rj) we see that

dσ = 0 in this case too. Thus from (∗) we have Γ = Σ.
We claim that Σ is a cycle in Ω. This means, from the definition of Σ in (2.3.1.1),

we have to show that if η(Γ, ai) 6= 0 then Ri ⊂ Ω. The contrapositive lends itself
to a more natural proof. If Ri has a point a such that a /∈ Ω then η(Γ, a) = 0 for
Γ ∼ 0 (mod Ω). One can connect ai to a be a line segment which avoids Γ. Thus
η(Γ, ai) = 0. This proves the contrapositive of the statement we wished to prove.

Since Σ is a cycle in Ω, it makes sense to integrate forms on Ω over Σ and since
Σ = Γ,

∫
Σ
ω =

∫
Γ
ω for all forms ω on Ω. If ω is closed, we have∫

Σ

ω =

n∑
i=1

η(Γ, ai)

∫
∂Ri

ω =

n∑
i=1

η(Γ, ai)

∫∫
Ri

dω = 0.

This proves the result. �

Corollary 2.3.2. A region Ω is simply connected if and only if for every cycle Γ
and every closed form ω

(2.3.2.1)

∫
Γ

ω = 0.

Proof. According to Theorem 2.1.2 of Lecture 11 a region is simply connected if and
only if every cycle Γ in Ω is homologous to zero in Ω.

Suppose (2.3.2.1) holds for every pair (Γ, ω) with Γ a cycle and ω a closed form.
Since dz/(z− a) is a closed form on Ω for every a /∈ Ω, we get η(Γ, a) = 0 for every
cycle Γ and every a /∈ Ω. By Theorem 2.1.2 of Lecture 11, Ω is simply connected.

Conversely if Ω is simply connected, then according to Theorem 2.1.2 of Lec-
ture 11 every cycle Γ in Ω is homologous to zero in Ω, and so by Theorem 2.3.1,
(2.3.2.1) holds for every pair (Γ, ω) with Γ a cycle and ω a closed form. �

3. The General Form of the Cauchy-Goursat Theorem

3.1. Theorem 2.3.1 has as a corollary the definitive form of the Cauchy-Goursat
Theorem, which has further corollaries.

Theorem 3.1.1 (The General Form of the Cauchy-Goursat Theorem). Let Ω be a
region and Γ a cycle such that Γ ∼ 0 (mod Ω). Then∫

Γ

f(z)dz = 0

for all holomorphic functions f(z) on Ω.
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Proof. By the fact that a holomorphic function f(z) on Ω is infinitely differentiable
(and so certainly C1) and satisfies the Cauchy-Riemann equations we see that
f(z)dz is a closed form on Ω. Theorem 2.3.1 gives the rest. �

Corollary 3.1.2 (General form of the Cauchy Integral Formula). Suppose Γ is a
cycle in a region Ω with Γ ∼ 0 (mod Ω) and f(z) is holomorphic on Ω. Then

η(Γ, z)f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ (z ∈ Ω r Γ∗).

Proof. Follows easily from Theorem 3.1.1. Note that for fixed z ∈ Ω r Γ∗ the
function

g(ζ) =


f(ζ)− f(z)

ζ − z
if ζ ∈ Ω r {z}

f ′(z) if ζ = z.

is holomorphic on Ω by Riemann’s removable singularities theorem and hence its
integral over Γ is zero by Theorem 3.1.1. �

3.2. Simple connectedness. Here is a list of characterisations of simple-connectedness.

Theorem 3.2.1. Let Ω be a region. The following are equivalent

(1) Ω is simply connected.
(2) Every cycle in Ω is homologous to zero in Ω.
(3) For every cycle Γ in Ω and every closed form ω on Ω we have

∫
Γ
w = 0.

(4) For every closed path γ in Ω and every holomorphic function f(z) on Ω,
we have

∫
γ
f(z)dz = 0.

(5) Every holomorphic function on Ω has a primitive.

Proof. From Theorem 2.1.2 of Lecture 11 and from Corollary 2.3.2 above we have (1)
⇔ (2)⇔ (3). Moreover it is clear that (4)⇔ (5) (see, if you need to, Theorem 1.1 of
Lecture 3). Next, from Cauchy-Riemann equations, we know that f(z)dz is closed
on Ω whenever f(z) is holomorphic on Ω, which yields (3) ⇒ (4). Finally (4) ⇒
(2) is seen as follows. Suppose a /∈ Ω. Then f(z) = 1/(z − a) is a holomorphic
function on Ω and hence by (4) we get η(γ, a) = 0 for every closed path in Ω, i.e.,
η(Γ, a) = 0 every cycle Γ in Ω. �

3.3. The Argument Principle. The following is an important variant of the
argument principle.

Theorem 3.3.1. Suppose f is a non-zero meromorphic function on a region Ω
with zeros at ai, i ∈ I and poles at bj, j ∈ J . Suppose the order of the zero at ai is
ni for every i ∈ I and the order of the pole at bj is mj for every j ∈ J . Then for a
cycle Γ in Ω such that Γ ∼ 0 (mod Ω) and such that Γ∗ does not contain any zero
or pole of f(z) we have

1

2πi

∫
Γ

f ′(z)

f(z)
dz =

∑
i∈I

η(Γ, ai)ni −
∑
j∈J

η(Γ, bj)mj .

Proof. The case where f is constant is trivial. So we assume f is non-constant. Let
T = {ai | i ∈ I} ∪ {bj | j ∈ J} and suppose U = {a ∈ C r Γ∗ | η(Γ, a) = 0}. Then
U is an open set in C r Γ∗ (for winding numbers are locally constant). Moreover
U contains the unbounded component of C r Γ∗ as well as C r Ω, for Γ ∼ 0 (mod
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Ω). The fact that U contains the unbounded component of C r Γ∗ shows that
K = C r U is compact and the fact that U ⊃ C \ Ω means K ⊂ Ω. We point out
that K = {a ∈ C r Γ∗ | η(Γ, a) 6= 0} ∪ Γ∗.

Break up the discrete subset T of Ω as a disjoint union

T = S t F
with S = U ∩ T and F = K ∩ T . Since F is discrete in K, it is finite (hence the
choice of the symbol F to denote it). Let us reindex if necessary and suppose that
{ai | i ∈ I} ∩ F = {a1, . . . , ar} and {bj | j ∈ J} ∩ F = {b1, . . . , bs}.

Since S ∩ K = ∅ with S discrete in Ω and K compact, we can find an open
neighbourhood Ω′ of K in Ω such that Ω′ ∩ S = ∅. Note that Γ ∼ 0 (mod Ω′) for
if η(Γ, a) 6= 0 then a ∈ K ⊂ Ω′. Clearly Ω′ contains Γ∗ as well as F . On Ω′ the set
F is the set of zeros as well as poles of f(z) and hence on Ω′ we can write

f(z) = g(z)

∏r
i=1(z − ai)ni∏s
j=1(z − bj)mj

with g holomorphic and nowhere vanishing on Ω′. We therefore have (on Ω′)

f ′(z)

f(z)
=
g′(z)

g(z)
+

r∑
i=1

ni
z − ai

−
s∑
j=1

mj

z − bj

and since g′(z)/g(z) is holomorphic on Ω′ and Γ ∼ 0 (mod Ω′) the integral of
g′(z)/g(z) over Γ vanishes by the general form of the Cauchy-Goursat theorem.
The result follows easily from this. �
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